Total No. of Printed Pages-8
 2 SEM TDC ECOH (CBCS) C 4

2022
(June/July)
ECONOMICS
(Core)
Paper: C-4

(Mathematical Methods in Economics-II)
Full Marks: 80
Pass Marks : 32
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Choose the correct answer from the following :
(a) Which of the following is a first-order difference equation?
(i) $\frac{d y}{d x}+a y=b$
(ii) $\frac{d^{2} y}{d x^{2}}+a y=b$
(iii) $y_{t+1}+a y_{t}=c$
(iv) All of the above
(b) Let A be a matrix of order $m \times n$ and B be a matrix of order $p \times q$. Then A and B are conformable for multiplication in the form $A B$, if
(i) $m=p$
(ii) $n=p$
(iii) $m=q$
(iv) $n=q$
(c) If $A=\left[\begin{array}{lll}2 & 4 & 3 \\ 3 & 5 & 1\end{array}\right]_{2 \times 3}$, then the norm of matrix A is
(i) $N(A)=5$
(ii) $N(A)=9$
(iii) $N(A)=4$
(iv) None of the above
(d) For a curve representing $u=f(x, y)$, if $\frac{d^{2} y}{d x^{2}}=-\mathrm{ve}$, then the curve is
(i) convex to the origin
(ii) concave to the origin
(iii) horizontal to x-axis
(iv) vertical on x-axis

(3)

(e) The CES production function represents
(i) increasing returns to scale
(ii) diminishing returns to scale
(iii) constant returns to scale
(iv) All of the above
(f) A discriminating monopolist maximizes his profit by selling quantity of products Q_{1} and Q_{2} in two sub-markets, market I and market II respectively, when
(i) $\frac{d C}{d Q}=\frac{\delta R}{\delta Q_{1}}=\frac{\delta R}{\delta Q_{2}}$
(ii) $M C=A R_{1}=A R_{2}$
(iii) $M R_{1}=M R_{2}=A C$
(iv) None of the above
(g) Under perfect competition, a firm attains equilibrium when its
(i) $\frac{d C}{d Q}=\frac{d R}{d Q}$
(ii) $\frac{d^{2} C}{d Q^{2}}=+$ ve
(iii) $\frac{d \pi}{d Q}=0$ and $\frac{d^{2} \pi}{d Q^{2}}=-\mathrm{ve}$
(iv) All of the above

14)

(h) The budget constraint for a consumer consuming two goods x and y with his money income M, given the price of $x\left(P_{x}\right)$ and price of $y\left(P_{y}\right)$ is expressed as
(i) $\frac{M U_{x}}{P_{x}}=\frac{M U_{y}}{P_{y}}$
(ii) $X P_{x}+Y P_{y} \leq M$
(iii) $X P_{x}+Y P_{y} \geq M$
(iv) None of the above
2. Answer any four of the following : $4 \times 4=16$
(a) Explain the rank of a matrix with the help of an example.
(b) Explain the properties of CES production function.
(c) If $z=x^{3} e^{2 y}$, then find $\frac{\delta z}{\delta x}$ and $\frac{\delta z}{\delta y}$.
(d) What are the conditions of unconstrained optimization for the function with one independent variable and more than one independent variables?
(e) A consumer consumes two goods x_{1} and x_{2}. His utility function is given by $U=u\left(x_{1}, x_{2}\right)$ and the budget line is given by $B=x_{1} P_{1}+x_{2} P_{2}$. Find out the conditions of consumer's equilibrium.

(5)

3. (a) (i) Solve the following difference equation :

4

$$
y_{t+1}-y_{t}=3 \text { with } y_{0}=5
$$

(ii) Solve the following Cobweb model :

$$
\begin{align*}
& Q_{d}=\alpha-\beta P_{t} \\
& Q_{s}=-y+\delta P_{t-1} \\
& Q_{d}=Q_{s} \tag{7}
\end{align*}
$$

Or
(b) (i) Write a short note on Cobweb market model.
(ii) Given the demand function

$$
Q_{d}=10-2 P_{t}
$$

and the supply function $Q_{s}=-5+3 P_{t-1}$. What is intertemporal equilibrium price? Find the time path of P_{t} and determine whether stable equilibrium is attainable or not. $\quad 1+5+1=7$
4. (a) (i) If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]_{2 \times 2}$, then show that

$$
\begin{equation*}
A^{2}-3 I=2 A \tag{4}
\end{equation*}
$$

(ii) Solve the following set of equations by using Cramer's rule :

$$
\begin{aligned}
& 3 x+2 y=12 \\
& 2 x+3 z=16 \\
& 4 y+2 z=20
\end{aligned}
$$

16)

(iii) Write down two economic 2 applications of matrix algebra.

Or
(b) (i) Explain with examples any five properties of determinant.
(ii) Find the value of the following determinant :

$$
\left|\begin{array}{llll}
2 & 2 & 4 & 9 \\
4 & 1 & 0 & 2 \\
4 & 1 & 0 & 0 \\
3 & 2 & 1 & 1
\end{array}\right|
$$

(iii) What is idempotent matrix? 1
5. (a) (i) Show that the indifference curve representing the utility function of a consumer consuming two goods x and y is negatively slopped.
(ii) Given the production function $Q=A K^{\alpha} L^{1-\alpha}$, find-
(1) average productivity of labour;
(2) average productivity of capital;
(3) marginal physical productivity of labour;
(4) marginal physical productivity
of capital.
$1+1+2+2=6$

(6)

(iii) Write down two economic applications of matrix algebra.

Or
(b) (i) Explain with examples any five properties of determinant.
(ii) Find the value of the following determinant :

$$
\left|\begin{array}{llll}
2 & 2 & 4 & 9 \\
4 & 1 & 0 & 2 \\
4 & 1 & 0 & 0 \\
3 & 2 & 1 & 1
\end{array}\right|
$$

(iii) What is idempotent matrix?
5. (a) (i) Show that the indifference curve representing the utility function of a consumer consuming two goods x and y is negatively slopped.
(ii) Given the production function $Q=A K^{\alpha} L^{1-\alpha}$, find -
(1) average productivity of labour;
(2) average productivity of capital;
(3) marginal physical productivity of labour;
(4) marginal physical productivity of capital.
$1+1+2+2=6$
(iii) What are the economic applications of first-order and second-order partial differentiations?

Or
(b) (i) Derive elasticity of substitution for C-D production function.
(ii) Verify whether the Euler's theorem is satisfied or not for the following production function :

$$
Q=L^{5 / 3} K^{-2 / 3}
$$

(iii) Given the utility function, $U=u(x, y)=\log \left(x^{2}+4 y^{2}\right)$, find the marginal utility of x and marginal utility of y.
$2+2=4$
6. (a) In a monopoly market, the $A R$ and $T C$ functions are $A R=100-2 Q$ and $C=50-4 Q+2 Q^{2}$. The government imposes a specific tax of $₹ 8$ per unit. Examine the effect of tax on equilibrium output, price and profit. .. $4+3+3=10$

Or

(b) The demand functions of a monopoly in two different markets are given by $P_{1}=53-4 Q_{1}$ and $P_{2}=29-3 Q_{2}$

(8)

and the total cost function is $C=20+5 Q$, where $Q=Q_{1}+Q_{2}$. Find-
(i) equilibrium outputs Q_{1} and Q_{2};
(ii) equilibrium prices P_{1} and P_{2};
(iii) maximum profit. $6+2+2=10$
7. (a) (i) Maximize $Y=5 x_{1} x_{2}$, subject to $x_{1}+2 x_{2}=8$ by applying Lagrange multiplier.
(ii) Given the utility function, $U=2+x+2 y+x y$ and the budget constraint $4 x+6 y=94$. Find out equilibrium level of x and y which will maximize total utility.

Or
(b) (i) Minimize $\quad Y=x_{1}^{2}-x_{1} x_{2}+2 x_{2}$, subject to $2 x_{1}+4 x_{2}=12$. 4
(ii) A producer desires to minimize his cost of production, $C=2 L+5 K$, where L and K are the inputs, subject to the satisfaction of the production function $Q=L K$. Find the optimum combination of L and K in order to minimize cost of production when output is 40 .

