Total No. of Printed Pages-7
 2 SEM TDC PHYH (CBCS) C 3

2022
(June/July)

PHY̌SICS

(Core)
Paper: C-3
(Electricity and Magnetism)
Full Marks: 53
Pass Marks: 21
Time: 3 hours
The figures in the margin indicate full marks
for the questions

1. Choose the correct answer (any five) : $1 \times 5=5$
(a) The electric flux passing through a sphere enclosing $+Q$ coulomb of charge is
(i) $\frac{Q}{3 \varepsilon_{0}}$
(ii) $\frac{Q}{\varepsilon_{0}}$
(iii) $\frac{Q}{5 \varepsilon_{0}}$
(iv) $\frac{Q}{4 \pi \varepsilon_{0}}$

12)

(b) The magnitude of electric field intensity at any point which is at a distance r from an electric dipole is directly proportional to
(i) $\frac{1}{r^{3}}$
(ii) $\frac{1}{r}$
(iii) $\frac{1}{r^{4}}$
(iv) $\frac{1}{r^{2}}$
(c) Poisson's equation for a homogeneous medium is
(i) $\nabla^{2} v=0$
(ii) $\nabla^{2} v=-\frac{\rho_{v}}{\varepsilon}$
(iii) $\nabla^{2} v=\frac{\rho_{v}}{\varepsilon}$
(iv) $\nabla^{2} v=\rho_{v}$

(3)

(d) The SI unit of magnetic vector potential is
(i) T
(ii) $\frac{\mathrm{A}}{\mathrm{m}^{2}}$
(iii) $\frac{\mathrm{Wb}}{\mathrm{m}^{2}}$
(iv) $\frac{\mathrm{Wb}}{\mathrm{m}}$
(e) An example of ferromagnetic material is
(i) zinc
(ii) manganese
(iii) cobalt
(iv) chromium
(f) Current in a circuit is wattless when the phase difference between current and voltage is
(i) zero
(ii) $\frac{\pi}{2}$
(iii) $+\pi$
(iv) $-\pi$

14)

2. (a) State Gauss law in electrostatics. Derive the relation $\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}$, where ρ is volume density of charge. $\quad 1+2=3$
(b) If 1 coulomb charge is placed at the centre of a cube of side 10 cm , calculate the flux coming out of any face of the cube.
3. (a) Prove the relation $E=-\nabla \phi$, where the symbols have their usual meanings. What is the significance of negative sign here?
(b) Calculate the electric potential at a point distance r from a point charge q.
4. (a) Define capacitance. Derive an expression for the capacitance of a parallel plate capacitor. $\quad 1+3=4$
(b) A point charge q is placed at a distance d from an infinite plane conductor held at zero potential. Using method of electrical image, calculate-
(i) induced surface charge density;
(ii) total induced charge;
(iii) force of attraction between the charge and the conductor. $2+2+1=5$

15)

5. (a) Derive the relationship between electric susceptibility and atomic polarizability on the basis of microscopic description of matter at atomic level.
(b) Why does electric field $: \therefore$ inside a dielectric medium decrease due to polarization?
(c) Show that $D=\varepsilon_{0} \vec{E}+\vec{P}$. Also give their units.

Or

The capacity of a capacitor is 50 picofarads when it is filled with a dielectric. Calculate the dielectric constant of the dielectric.
6. (a) State the Biot-Savart law. Find the magnetic field at a point due to straight current carrying conductor using Biot-Savart law. $1+3=4$

Or

Prove that $\oint_{C} \vec{B} \cdot \vec{d} \vec{l}=\mu_{0} I$.
(b) Show that divergence of magnetic field is zero.3
7. Define magnetic induction \vec{B} and intensity of magnetization \vec{M}. Prove that $\vec{B}=\mu_{0}(\vec{H}+\vec{M})$. $1+2=3$

16)

8. Derive Maxwell's equations of electromagnetic wave and write the physical significance of each equation.

Or

Show that Ampere's law for varying currents may be written as

$$
\oint_{C} \vec{B} \cdot d \vec{l}=\mu_{0} I+\mu_{0} \varepsilon_{0} \frac{d \phi}{d t}
$$

9. A circuit has $R=10 \mathrm{ohm}, L=0.05 \mathrm{H}$ and $C=20 \mu \mathrm{~F}$. An alternating potential difference of 100 V (RMS) is applied across it. Calculate (a) resonant frequency, (b) current at resonance and (c) Q-value of the circuit.

$$
1+1+1=3
$$

Or

A coil of self-inductance 0.7 henry is connected in series with a non-inductive resistance of 50 ohm . Calculate the wattless and power components as well as the total current when connected to a supply of 200 V at 50 Hz .
10. State and prove Thevenin theorem. What is the limitation of this theorem?
$3+1=4$

(7)

Or

In a network given below, find the current flowing through the 12Ω resistance using the superposition theorem :

11. Show that the charge sensitivity is equal to $2 \pi / T$ times the current sensitivity in case of the ballistic galvanometer. Under what conditions does a ballistic galvanometer become a dead beat galvanometer? . $2+1=3$

Or

The first three successive deflections of a ballistic galvanometer are found to be 15 cm , 14.9 cm and 14.8 cm . Calculate the first corrected deflection under damping.

