> 2022
> (June/July)

PHYSICS
 (Core)
 Paper : C-8

(Mathematical Physics-III)
$\frac{\text { Full Marks : } 53}{\text { Pass Marks : } 21}$
Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. Choose the correct option :
(a) If z_{1} and z_{2} are two complex numbers, then

$$
\begin{aligned}
& \text { (i) }\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right| \\
& \text { (ii) }\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|-\left|z_{2}\right| \\
& \text { (iii) }\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|-\left|z_{2}\right|+\left|z_{1} z_{2}\right| \\
& \text { (iv) }\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{1} z_{2}\right|
\end{aligned}
$$

12)

(b) The function $f(z)=\frac{1}{(z-2)^{3}}$ has a/ an ___ at $z=2$.
(i) essential singularity
(ii) pole
(iii) branch point
(iv) None of the above
(c) The Laplace transform $f(s)$ of $F(t)=t$ is
(i) 1
(ii) s
(iii) s^{2}
(iv) $1 / s^{2}$
(d) If $g(\omega)$ is the Fourier transform of $f(t)$, then the Fourier transform of $f(a t)$ is
(i) $\frac{1}{a} g\left(\frac{\omega}{a}\right)$
(ii) $\frac{1}{\omega} g\left(\frac{\omega}{a}\right)$
(iii) $\frac{1}{\omega} g\left(\frac{a}{\omega}\right)$
(iv) None of the above
2. (a) Find the polar form of $-5+5 i$.
(b) Find the residue of the function

$$
\begin{equation*}
f(z)=\frac{z}{(z-1)(z+1)^{2}} \tag{2}
\end{equation*}
$$

(c) Show how Cauchy's theorem can be used for a multiply connected region.

(3)

(d) Show that the Fourier transform of the derivative of $f(t)$ is $i \omega g(\omega)$, where $g(\omega)$ is the Fourier transform of $f(t)$.
(e) Prove that if $f(s)$ is the Laplace transform of $F(t)$, then the Laplace transform of $F(a t)$ is

$$
\begin{equation*}
\frac{1}{a} f\left(\frac{s}{a}\right) \tag{2}
\end{equation*}
$$

3. (a) What are the different types of singularities of a complex function? Locate and name the singularities of

$$
f(z)=\frac{z^{8}+z^{4}+2}{(z-1)^{3}(3 z+2)^{2}} \quad 2+3=5
$$

(b) Prove Cauchy-Riemann equations in polar coordinates.

Or

If $f(z)$ is an analytic function of z, then prove that

$$
\left(\frac{\partial}{\partial x^{2}}+\frac{\partial}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}
$$

(c) State the Cauchy's integral formula. Evaluate

$$
\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z
$$

where C is the circle $|z|=1$.

14)

(d) Find the value of

$$
\int_{C} \frac{\sin ^{6} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z
$$

where C is the circle $|z|=1$.
(e) Express the following function in a Laurent's series :

$$
f(z)=\frac{1}{(z+1)(z+3)}
$$

4. Find the Fourier transform of the following functions (any two) :
(i) $e^{-|t|}$
(ii) $N e^{-\alpha x^{2}}$ (N and α are constants)
(iii) $e^{-r^{2} / a^{2}}$ (a is a constant and

$$
\left.r=\sqrt{x^{2}+y^{2}+z^{2}}\right)
$$

5. Find the Laplace transform of the following functions (any two) :

$$
3 \times 2=6
$$

(i) $t^{2} e^{t} \sin 4 t$
(ii) $e^{a t} \cos \omega t$
(iii) t^{n}
6. Write short notes on the following (any two) :

$$
3 \times 2=6
$$

(a) Cauchy's theorem
(b) Laplace transforms and its applications
(c) Parseval's theorem

