Total No. of Printed Pages 7

4 SEM TDC PHYH (CBCS) C 10

(b) The rectification efficiency of the way rectifier is <u>**220</u>(2**)alf-ways we find</u>

(June/July) supp (i)

PHYSICS ILad (ii)

(Core) elduob (iii)

Paper : C-10, 12.1 (u)

(Analog Systems and Applications) (c) Quiescence is a state of

> Full Marks: 53 Pass Marks: 21

Time : 3 hours (ii)

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer : 1×5=5
 - (a) When reverse bias is applied to a junction diode
 - (i) width of depletion layer decreases
 - (ii) potential barrier increases
 - (iii) potential barrier decreases
 - (iv) minority carrier increases

22P/1270

(Turn Over)

- (b) The rectification efficiency of full-wave rectifier is _____ of half-wave rectifier.
 - (i) equal
 - (ii) half
 - (iii) double
 - (iv) 1.21 times
 - (c) Quiescence is a state of
 - (i) activity
 - (ii) inactivity
 - (iii) amplification
 - (iv) switching
 - (d) In a transistor amplifier, the input impedance should be
 - (i) low
 - (ii) high
 - (iii) negligible
 - (iv) None of the above

22P/1270

(Continued)

- (e) Which of the following electrical characteristics is not exhibited by an ideal OP-AMP?
 - (i) Infinite voltage gain
 - (ii) Infinite bandwidth
 - (iii) Infinite output resistance
 - (iv) Infinite slew rate
- **2.** (a) Explain how depletion layer is formed under unbiased situation of a *p*-*n* junction diode.
 - (b) Explain the current flow mechanism in forward and reverse biased p-n junction diode.

Or

Define the mobility of charge carriers and conductivity. Obtain an expression for the electrical conductivity of an intrinsic semiconductor. 1+3=4

22P/1270

(Turn Over)

3

4

(4)

- 3. (a) Explain with circuit diagram, the Zener
 - (b) Describe the working of LED.
- **4.** (a) Draw the C-E circuit of a transistor. Sketch its output characteristics. Explain the active, cut-off and saturation regions. 1+1+2=4
 - (b) Define α and β of a transistor. Write the relation between them.

Or

the current flow mechanism in

A germanium transistor with $\beta = 100$ is to be operated as a C-E amplifier with fixed bias method. The transistor operates at the signal collector current $I_C = 1$ mA and $V_{CE} = 4$ V. If a load resistance of 2 k Ω is connected in the collector circuit, then find the base resistance to be connected. (For germanium transistor $V_{BE} = 0.3$ V)

22P/1270

(Continued)

2

4

3

2

(b) Draw the small signal hybrid equivalent circuit of a common-emitter transistor amplifier and derive the expressions for current gain and input impedance.

Or

Explain class *A*, class *B* and class *C* amplifiers with graphical representation.

- **6.** Draw and discuss the frequency response curve of an *R*-*C* coupled transistor amplifier showing cut-off frequencies and the bandwidth.
- **7.** Discuss the effect of negative feedback on the input and output impedances of an amplifier.
- 3

3

4

 State Barkhausen's criterion and explain the conditions that must be satisfied for feedback amplifier to produce steady oscillations.

(Turn Over)

(b) Draw the small signal hybrid equivalent circuit of a common-emitter transistor amplifier and derive the expressions for current gain and input impedance.

Or

Explain class *A*, class *B* and class *C* amplifiers with graphical representation.

- 6. Draw and discuss the frequency response curve of an *R*-*C* coupled transistor amplifier showing cut-off frequencies and the bandwidth.
- **7.** Discuss the effect of negative feedback on the input and output impedances of an amplifier.
- State Barkhausen's criterion and explain the conditions that must be satisfied for feedback amplifier to produce steady oscillations.

(Turn Over)

4

3

3

Draw circuit diagram of an *R*-*C* phase shift oscillator and explain its operation.

Or

- **9.** (a) What is an OP-AMP? Draw the schematic block diagram of basic OP-AMP. 1+2=3
 - (b) Explain with circuit diagram, the adder and subtractor using OP-AMP.
 - (c) Determine the lower frequency limit (critical frequency) for the integrator circuit shown below :

3

4

3

Or

Discuss OP-AMP as log amplifier.

3

10. Draw the block diagram of successive approximation type A/D converter.

Or

Draw the circuit diagram of weighted resistor type D/A converter.

* * *

22P/1270

(Continued)

22P-5000/1270

4 SEM TDC PHYH (CBCS) C 10