Total No. of Printed Pages-7

2 SEM TDC MTMH (CBCS) C 3

$$
\begin{gathered}
2022 \\
\text { (June/July) } \\
\text { MATHEMATICS } \\
\text { (Core) } \\
\text { Paper : C-3 } \\
\text { (Real Analysis) } \\
\frac{\text { Full Marks: } 80}{\text { Pass Marks : } 32} \\
\text { Time : } 3 \text { hours }
\end{gathered}
$$

The figures in the margin indicate full marksfor the questions

1. (a) Define ε-neighbourhood of a point. 1
(b) Find the infimum and supremum, if it exists for the set $A=\{x \in \mathbb{R}: 2 x+5>0\}$.2

(2)

(c) If

$$
S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}
$$

then show that $\inf S=0$, where $\inf S$. denotes the infimum of S.
(d) State and prove that Archimedean Property of real numbers.
(e) Let $S \subseteq \mathbb{R}$-be"a set that is bounded above and for $a \in \mathbb{R}, a+S$ is defined as $a+S=\{a+s: s \in S\}$. Show that $\sup (a+S)=a+\sup (S)$, where $\sup (S)$ denotes the supremum of S.
2. (a) State the Completeness Property of real numbers.
(b) Show that

$$
\sup \left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}=1
$$

(c) Let

$$
I_{n}=\left[0, \frac{1}{n}\right]
$$

for $n \in \mathbb{N}$. Prove that

$$
\bigcap_{n=1}^{\infty} I_{n}=0
$$

(3)

(d) Prove that the set of real numbers is not countable.

Or

If

$$
S=\left\{\frac{1}{n}-\frac{1}{m}: n, m \in \mathbb{N}\right\}
$$

find $\inf S$ and supS.
(e) State and prove the nested interval property.

Or

Prove that there exists a real number x such that $x^{2}=2$.
3. (a) State the Monotone Subsequence Theorem.

0
(b) Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1}\right)=0 \tag{2}
\end{equation*}
$$

(c) Show that a convergent sequence of real
numbers is bounded.
(d) Show that

$$
\begin{aligned}
& \quad \lim _{n \rightarrow \infty}\left(b^{n}\right)=0 \\
& \text { if } 0<b<1 .
\end{aligned}
$$

Or
Show that

$$
\lim _{n \rightarrow \infty}\left(c^{\frac{1}{n}}\right)=1
$$

for $c>1$.
(e) State and prove the Monotone
Convergence theorem.

Or
Let $Y:=\left(y_{n}\right)$ be defined as $y_{1}=1$, $y_{n+1}=\frac{1}{4} y_{n}+2, n \geq 1$. Show that $\left(y_{n}\right)$ is monotone and bounded. Find the limit.
4. (a) Give an example of two divergent sequences such that their sum
converges.
(b) Prove that the limit of a sequence of real

14)

(d) Show that

$$
\lim _{n \rightarrow \infty}\left(b^{n}\right)=0
$$

if $0<b<1$.

Or

Show that

$$
\lim _{n \rightarrow \infty}\left(c^{\frac{1}{n}}\right)=1
$$

for $c>1$.
(e) State and prove the Monotone Convergence theorem.

Or
Let $Y:=\left(y_{n}\right)$ be defined as $y_{1}=1$, $y_{n+1}=\frac{1}{4} y_{n}+2, n \geq 1$. Show that $\left(y_{n}\right)$ is monotone and bounded. Find the limit.
4. (a) Give an example of two divergent sequences such that their sum converges.
(b). Prove that the limit of a sequence of real - numbers is unique.

(6)

5. (a) State the Cauchy Criterion for convergence of a series.
(b) Prove that if

$$
\sum_{n=1}^{\infty} x_{n}
$$

converges then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(x_{n}\right)=0 \tag{3}
\end{equation*}
$$

(c) Prove that if

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

diverges.
(d) Show that the series

$$
\sum_{n=1}^{\infty} x_{n}
$$

converges if and only if the sequence $S=\left(s_{k}\right)$ of partial sums is bounded.
(e) Define absolute convergence. Show that if a series of real numbers is absolutely convergent then it is convergent. $\quad 1+3=4$
(f) Let f be a positive, decreasing function on $\{t: t \geq 1\}$. Show that the series

$$
\sum_{k=1}^{\infty} f(k)
$$

(7)

converges if and only if the improper integral

$$
\int_{1}^{\infty} f(t) d t=\lim _{b \rightarrow \infty} \int_{1}^{b} f(t) d t
$$

exists.

Or

Show that the series

$$
\sum_{n=1}^{\infty} \cos n
$$

is divergent.

$$
\star \star \star
$$

