Total No. of Printed Pages-5

2 SEM TDC MTMH (CBCS) C 4

20.22
(June/July)

MATHEMATICS

(Core)
Paper : C-4

(Differential Equations)

Full Marks : 60
Pass Marks : 24

Time : 3 hours
The figures in the margin indicate full marks
for the questions
(Throughout the paper, notations $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}, y^{\prime}=\frac{d y}{d x}$)

1. (a) Define an integrating factor of a differential equation.1
(b) Define implicit solution of the
differential equation.

(2)

(c) Show that the function f defined by $f(x)=2 e^{3 x}-5 e^{4 x}$, is a solution of the differential equation $y^{\prime \prime}-7 y^{\prime}+12 y=0$.

Or
Show that the function $x^{2}+y^{2}=25$ is an implicit solution of the differential $\begin{aligned} & \text { equation } \\ & -5<x<5\end{aligned} x+y y_{\mathrm{e}}^{\prime}=0$ on the interval
(d) Solve the initial value problem

$$
\begin{equation*}
y^{\prime}=e^{x+y}, y(1)=1 \tag{2}
\end{equation*}
$$

(e) Verify the exactness of the differential equation,
$\left(2 x \sin y+y^{3} e^{x}\right) d x+\left(x^{2} \cos y+3 y^{2} e^{x}\right) d y=0$
(f) Solve any two of the following :
(i) $\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0$
(ii) $x y^{\prime}+(x+1) y=x^{3}$
(iii) $y^{\prime}+3 x^{2} y=x^{2}, y(0)=2$
2. (a) Draw the input-output compartmental diagram for lake pollution model. Write the word equation to derive this model.

$$
1+1=2
$$

(b) Derive the formula for half-life of radioactive material.

(3)

(c) Derive the differential equation of exponentially growth population model.
(d) Answer any one of the following : 3
(i) Solve the differential equation $\frac{d C}{d t}=\frac{F}{V}\left(c_{i n}-C\right)$ with initial condition $C(0)=c_{0}$.
(ii) How long ago was the radioactive carbon (${ }^{14} \mathrm{C}$) formed and, within an error margin, the Lascaux Cave paintings painted? (the half-life of ${ }^{14} \mathrm{C}$ is $5,568 \pm 30$ years). Decay rate of carbon ${ }^{14} \mathrm{C}$ is 1.69 per minute per gram and initially 13.5 per minute per gram.
3. (a) Define linear combinations of n functions.
(b) State the principle of superposition for homogeneous differential equation.
(c) Fill in the blank:

If the Wronskian of two solutions of 2nd order differential equation is identically zero, then, the solutions are linearly \qquad .
(d) Show that $e^{2 x}$ and $e^{3 x}$ are the two solutions of the equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$ and also verify the principle of superposition.

(4)

(e) If $y_{1}(x)$ and $y_{2}(x)$ are any two solutions of the equation

$$
\begin{gathered}
a_{0}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0 \\
a_{0}(x) \neq 0, x \in(a, b)
\end{gathered}
$$

then prove that the linear combination $c_{1} y_{1}(x)+c_{2} y_{2}(x)$, where c_{1} and c_{2} are constants, is also a solution of the given equation.

Or

Show that $e^{x} \sin x$ and $e^{x} \cos x$ are linearly independent solutions of $y^{\prime \prime}-2 y^{\prime}+2 y=0$. Write the general solution. Find the solution $y(x)$ with the property $y(0)=2, y^{\prime}(0)=-3$.
4. Answer any one of the following :
(a) If $y=x$ is : a solution of $\left(x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$, then find a linearly independent solution by reducing the order.
(b) Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x^{3}$
5. Answer any two of the following :
(a) Solve $y^{\prime \prime}+a y=\sec a x$.
(b) Solve by method of undetermined coefficient $y^{\prime \prime}-2 y^{\prime}+y=x^{2}$.

(5)

(c) Solve by method of variation of parameter

$$
y^{\prime \prime}+y=\tan x
$$

6. (a) Define equilibrium solution of a differential equation.
(b) Write the word equation and differential equation for the model of battle.
(c) Find the equilibrium solution of the differential equation of epidemic model of influenza.
(d) Draw the phase plane diagram of

$$
\begin{gathered}
d x / d t=0 \cdot 2 x-0.1 x y \\
d y / d t=-0.15 y+0.05 x y \\
O r
\end{gathered}
$$

Sketch the phase-plane trajectory and determine the direction of trajectory of model of battle.

$$
\star \star \star
$$

