Total No. of Printed Pages-4
4 SEM TDC MTMH (CBCS) C 8

2022
 (June/July)

MATHEMATICS
 (Core)

Paper : C-8
(Numerical Methods)

Full Marks : 60
Pass Marks : 24

Time : 3 hours
The figures in the margin indicate full marks for the questions

Use of scientific calculator is allowed

1. (a) Write True or False :

An exact number may be regarded as an approximate number with error zero.
(b) Define round-off error and truncation error.
$1+1=2$

(2)

(c) The number $x=37.46235$ is rounded off to four significant figures. Compute the absolute error and relative error.

$$
1+1=2
$$

2. (a) Write True or False : 1

A transcendental equation may have no roots.
(b) Find a real root of the equation $x^{3}-3 x+1=0$ by the method of bisection correct up to three decimal places.

Or

Find a real root of the equation $x^{3}-x-10=0$ by the method of secant, correct up to three decimal places.
(c) Describe Newton's method for solution of an algebraic equation.

Or

Determine the real root of $2 x-3 \sin x-5=0$ by Newton's method correct up to three decimal places.
3. (a) Solve

$$
\begin{aligned}
x_{1}+x_{2}-x_{3} & =2 \\
2 x_{1}+3 x_{2}+5 x_{3} & =-3 \\
3 x_{1}+2 x_{2}-3 x_{3} & =6
\end{aligned}
$$

by Gaussian elimination method.

13)

Or

Find the solution of the system

$$
\begin{aligned}
83 x+11 y-4 z & =95 \\
7 x+52 y+13 z & =104 \\
3 x+8 y+29 z & =71
\end{aligned}
$$

by Gauss-Seidel method (obtain three iterations).
(b) Describe Gauss-Jordan method.
Or

Solve by Gauss-Jacobi method

$$
\begin{aligned}
& 5 x+2 y+z=12 \\
& x+4 y+2 z=15 \\
& x+2 y+5 z=20
\end{aligned}
$$

4. (a) Show that $\Delta-\nabla=\Delta \nabla$.
(b) Deduce Lagrange's interpolation
formula.
(c) Applying Newton's interpolation formula, compute $\sqrt{5 \cdot 5}$ (given that $\sqrt{5}=2 \cdot 236, \quad \sqrt{6}=2 \cdot 449, \quad \sqrt{7}=2 \cdot 646$, $\sqrt{8}=2 \cdot 828$).

Or
Define interpolation. Write the underlying assumptions for the validity of the various methods used for interpolation.

(4)

5. (a) Deduce trapezoidal rule for numerical integration.
(b) Evaluate $\int_{0}^{10} x^{2} d x$, by using Simpson's $\frac{1}{3}$ rule.
(c) Evaluate the integral of $f(x)=1+e^{-x} \sin 4 x$ over the interval $[0,1]$ using Boole's rule (using exactly five functional evaluations).

Or
Use the midpoint rule with $M=5$ to approximate the integral $\int_{-1}^{1}\left(1+x^{2}\right)^{-1} d x$.
6. (a) Describe Euler's method for first-order and first-degree differential equation.
(b) Using the Runge-Kutta method of fourth order, find the numerical solution at $x=0.8$ for $\frac{d y}{d x}=x+y, \quad y(0.4)=0.41$, assume the step length $h=0 \cdot 2$.

Given $\frac{d y}{d x}=x^{3}+y, \quad y(0)=1, \quad$ compute $y(0 \cdot 3)$ by Euler's method taking $h=0 \cdot 1$.

$$
\star \star \hbar
$$

