Total No. of Printed Pages-4

4 SEM TDC MTMH (CBCS) C 9

2022

(June/July)

MATHEMATICS

(Core)

Paper : C-9

(Riemann Integration and Series of Functions)

Full Marks : 80 Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks for the questions

- **1.** (a) State two partitions of the interval [1, 2] such that one is a refinement of the other.
 - (b) Consider the function f(x) = x on [0, 1]and the partitions

$$P = \{x_i = \frac{i}{4}, i = 0, 1, 2, 3, 4\}$$
$$Q = \{x_j = \frac{j}{4}, j = 0, 1, 2, 3, 4, 5, 6\}$$

Determine the lower sums and upper sums of f with respect to P and Q. State the relations between L(f, P) and L(f, Q); U(f, P) and U(f, Q).

22P/1275

(Turn Over)

1

4

For a bounded function f on [a, b] with its bounds m and M, show that $m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)$

- (a) Define a tagged portion of a closed interval. Define Riemann sum of a bounded function.
 - (b) Let $f:[a, b] \to \mathbb{R}$ be integrable. Then show that

$$\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx$$

- (c) Answer any *four* questions from the following : 5×4=20
 - (i) Let $f:[a, b] \to \mathbb{R}$ be bounded and monotonic. Then show that f is integrable.
 - (ii) Let $f:[a, b] \to \mathbb{R}$ be continuous.
 - Then show that f is integrable.
 - (iii) Let $f : [a, b] \to \mathbb{R}$ be integrable. Define F on [a, b] as $F(x) = \int_a^x f(t)dt$; $x \in [a, b]$. Show that F is continuous on [a, b].
 - (iv) Let f be continuous on [a, b]. Show that there exists $c \in [a, b]$ such that

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx = f(c)$$

22P/1275

(Continued)

3

- (3)
- (v) Show that if $f:[a, b] \to \mathbb{R}$ is integrable, then |f| is integrable on [a, b].
- (vi) Let $f:[a, b] \to \mathbb{R}$ be Riemann integrable. Then show that "'f is bounded on [a, b].

з.	(a)	Discuss the convergence of $\int_{1}^{\infty} \frac{dx}{x^{p}}$ for	
		various values of p.	3
	(b)	Attempt any one :	
		Show that—	
		(i) $B(m, n) = B(n, m)$	
		(<i>ii</i>) $\Gamma(m+1) = \underline{m}; m \in \mathbb{N}$	3
	(c)	Show that $\int_0^\infty x^{n-1} e^{-x} dx$ exists.	4
4.	(a)	Define pointwise convergence of	
		sequence of functions.	1
	(b)	Define uniform convergence of sequence	
		of functions.	2
	(c)	State and prove Weierstrass M-test for	
		the series of functions.	4
	(d)	State and prove Cauchy's criterion for	
		uniform convergence of a series of	
		functions.	4
		Or	
		Let $f_n : J \subseteq \mathbb{R} \to \mathbb{R}$ converge uniformly on	
		J to f. Let $f_n \forall n$ is continuous at $a \in J$.	

Then show that f is continuous at a.

22P/1275

(Turn Over)

- (4)
- (e) Let $\{f_n\}$ be a sequence of continuous functions on [a, b] and $f_n \to f$ uniformly on [a, b]. Show that f is continuous and therefore integrable. Establish that

$$\int_{a}^{b} f(x) dx = \lim \int_{a}^{b} f_{n}(x) dx$$

4

5

5

4

5

- (f) Let $f_n: (a, b) \to \mathbb{R}$ be differentiable. Let there exist functions f and g defined on (a, b) such that $f_n \to f$ and $f'_n \to g$ uniformly on (a, b). Show that f is differentiable and f' = g on (a, b).
- (g) Consider the function $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \frac{\sin nx}{n}$. Show that (f_n) converges pointwise and uniformly to the zero function.
- (a) Define a power series around a real number c. Give an example of power series around the origin.
 - (b) Define radius of convergence of a power series. Show that the radius of convergence R of a power series $\sum a_n x^n$

is given by
$$\frac{1}{R} = \lim \left| \frac{a_{n+1}}{a_n} \right|$$
.

- (c) State and prove Cauchy-Hadamard theorem.
- (d) Show that if the series $\sum a_n$ converges, then the power series $\sum a_n x^n$ converges uniformly on [0, 1].

22P-2500/1275 4 SEM TDC MTMH (CBCS) C 9