Total No. of Printed Pages-7

4 SEM TDC MTMH (CBCS) C 10

2022

(June/July)

MATHEMATICS

(Core)

Paper : C-10

(Ring Theory and Linear Algebra-I)

Full Marks : 80 Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Give an	example	ofar	ing wit	hout	unity.	1
----	-----	---------	---------	------	---------	------	--------	---

- (b) Define unit element in a ring.
- (c) If the unity and the zero element of a ring R are equal, show that $R = \{0\}$, where 0 is the zero element of R.

22P/1276

(Turn Over)

1

- (d) Give an example of a subring which is not an ideal.
- (e) If I is an ideal of a ring R with unity such that $1 \in I$, show that I = R. 2
- (f) Show that \mathbb{Z}_{12} is not an integral domain.
- (g) Show that every field is an integral domain. Give an example to show that every integral domain is not necessarily a field. 4+1=5

Or

Define characteristic of a ring. Prove that the characteristic of an integral domain is 0 or a prime. 1+4=5

(h) Show that if A and B are two ideals of a ring R, then A+B is an ideal of R containing both A and B, where

$$A+B = \{a+b \mid a \in A, b \in B\}$$

Or

Show that in a Boolean ring R, every prime ideal $P \neq R$ is maximal. 5

(Continued)

5

2

2

22P/1276

(2)

(3)

2. (a) Define kernel of a ring homomorphism.

- (b) If $f: R \to R'$ be a ring homomorphism, show that f(-a) = -f(a).
- (c) Let R be a commutative ring with char (R) = 2. Show that $\phi : R \to R$ defined by $\phi(x) = x^2$ is a ring homomorphism.

(d) Let

$$R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} : a, b \in \mathbb{Z} \right\} \text{ and } \phi : \mathbb{R} \to \mathbb{Z}$$

defined by

$$\phi\left(\begin{bmatrix}a&b\\b&a\end{bmatrix}\right)=a-b$$

Find ker o.

(e) Let $f: R \to R'$ be an onto homomorphism, where R is a ring with unity. Show that f(l) is the unity of R'.

Or

Prove that a homomorphism $f: R \to R'$ is one-one if and only if ker $f = \{0\}$. 3

(Turn Over)

2

3

1

2

(4)

(f) Show that the relation of isomorphism in rings is an equivalence relation. 5

Or

Let A, B be two ideals of a ring R. Show that

$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$

- 3. (a) Is \mathbb{R} a vector space over \mathbb{C} ?
 - (b) Define zero subspace of a vector space.
 - (c) For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ of \mathbb{R}^2 and $\alpha \in \mathbb{R}$, let $x + y = (x_1 + y_1, x_2 + y_2)$ and $\alpha x = \alpha(x_1, x_2) = (\alpha x_1, 0)$. Is \mathbb{R}^2 a vector space with respect to above operations? Justify your answer. 1+1=2
 - (d) Let V be a vector space of all 2×2 matrices over the field \mathbb{R} of real numbers. Show that the set S of all 2×2 singular matrices over \mathbb{R} is not a subspace of V.

22P/1276

(Continued)

2

5

1

- (e) Consider the vectors $v_1 = (1, 2, 3)$ and $v_2 = (2, 3, 1)$ in $\mathbb{R}^3(\mathbb{R})$. Find k so that u = (1, k, 4) is a linear combination of v_1 and v_2 .
- (f) Show that the vectors $v_1 = (1, 1, 0)$, $v_2 = (1, 3, 2)$ and $v_3 = (4, 9, 5)$ are linearly dependent in $\mathbb{R}^3(\mathbb{R})$.
- (g) Prove that any basis of a finitedimensional vector space is finite.

Or

Let W_1 and W_2 be two subspaces of a finite-dimensional vector space. Then show that

 $\dim(W_1 + W_2) = \dim W_1 + \dim W_2$ $-\dim (W_1 \cap W_2) \qquad 4$

- **4.** (a) Let T be a linear transformation from a vector space U to a vector space V over the field F. Prove that the range of T is a subspace of V.
 - (b) Examine whether the following mappings are linear or not : 2+2=4

(i) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$T(x, y, z) = (|x|, y + z)$$

(Turn Over)

2

3

4

3

22P/1276

(6)

(ii)
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by
 $T(x, y) = (x + y, x)$

(c) If $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + y, x - y, y)is a linear transformation, find the rank and nullity of T. 4+4=8

(d) Let T be a linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (x_1, 0)$. Find the matrix of T with respect to the basis $\{v_1, v_2\}$, where $v_1 = (1, 1)$ and $v_2 = (2, -1)$.

(e) Let $T: V \to U$ be a linear transformation. Show that

 $\dim V = \operatorname{rank} T + \operatorname{nullity} T$

Or

Prove that a linear transformation $T: V \rightarrow U$ is non-singular if and only if T carries each linearly independent subset of V onto a linear independent subset of U.

22P/1276

(Continued)

5

5

(f) Define isomorphism of vector spaces. Prove that the mapping

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \vdash (a, b, c, d)$$

from $M_2(\mathbb{R})$ to \mathbb{R}^4 is an isomorphism. 5

Or

Prove that every *n*-dimensional vector space over a field F is isomorphic to F^n . 5

22P-2500/1276 4 SEM TDC MTMH (CBCS) C 10