Total No. of Printed Pages-7
4 SEM TDC MTMH (CBCS) C 10

2022
 (June/July)

MATHEMATICS

(Core)
Paper: C-10
(Ring Theory and Linear Algebra-I)
Full Marks: 80
Pass Marks : 32

Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. (a) Give an example of a ring without unity. 1
(b) Define unit element in a ring. 1
(c) If the unity and the zero element of a ring R are equal, show that $R=\{0\}$, where 0 is the zero element of R.

121

(d) Give an example of a subring which is not an ideal.
(e) If I is an ideal of a ring R with unity such that $1 \in I$, show that $I=R$.
(f) Show that \mathbb{Z}_{12} is not an integral domain.
(g) Show that every field is an integral domain. Give an example to show that every integral domain is not necessarily a field.

$$
4+1=5
$$

Or

Define characteristic of a ring. Prove that the characteristic of an integral domain is 0 or a prime. $\quad 1+4=5$
(h) Show that if A and B are two ideals of a ring R, then $A+B$ is an ideal of R containing both A and B, where

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Or
Show that in a Boolean ring R, every prime ideal $P \neq R$ is maximal.

(3)

2. (a) Define kernel of a ring homomorphism.
(b) If $f: R \rightarrow R^{\prime}$ be a ring homomorphism, show that $f(-a)=-f(a)$.
(c) Let R be a commutative ring with char $(R)=2$. Show that $\phi: R \rightarrow R$ defined by $\phi(x)=x^{2}$ is a ring homomorphism.

2
(d) Let

$$
R=\left\{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]: a, b \in \mathbb{Z}\right\} \text { and } \phi: \mathbb{R} \rightarrow \mathbb{Z}
$$

defined by

$$
\phi\left(\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\right)=a-b
$$

Find ker ϕ.
(e) Let $f: R \rightarrow R^{\prime}$ be an onto homomorphism, where R is a ring with unity. Show that $f(1)$ is the unity of R^{\prime}.

Or

Prove that a homomorphism $f: R \rightarrow R^{\prime}$ is one-one if and only if $\operatorname{ker} f=\{0\}$.

141

(f) Show that the relation of isomorphism in rings is an equivalence relation.

Or

Let A, B be two ideals of a ring R. Show that

$$
\frac{A+B}{A} \cong \frac{B}{A \cap B}
$$

3. (a) Is \mathbb{R} a vector space over \mathbb{C} ?
(b) Define zero subspace of a vector space.
(c) For $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ of \mathbb{R}^{2} and $\alpha \in \mathbb{R}$, let $x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$ and $\alpha x=\alpha\left(x_{1}, x_{2}\right)=\left(\alpha x_{1}, 0\right)$. Is \mathbb{R}^{2} a vector space with respect to above operations? Justify your answer.
(d) Let V be a vector space of all 2×2 matrices over the field \mathbb{R} of real numbers. Show that the set S of all 2×2 singular matrices over \mathbb{R} is not a subspace of V.

(5)

(e) Consider the vectors $v_{1}=(1,2,3)$ and $v_{2}=(2,3,1)$ in $\mathbb{R}^{3}(\mathbb{R})$. Find k so that $u=(1, k, 4)$ is a linear combination of v_{1} and v_{2}.
(f) Show that the vectors $v_{1}=(1,1,0)$, $v_{2}=(1,3,2)$ and $v_{3}=(4,9,5)$ are linearly dependent in $\mathbb{R}^{3}(\mathbb{R})$.
(g) Prove that any basis of a finitedimensional vector space is finite.

Or

Let W_{1} and W_{2} be two subspaces of a finite-dimensional vector space. Then show that

$$
\begin{align*}
\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1} & +\operatorname{dim} W_{2} \\
& -\operatorname{dim}\left(W_{1} \cap W_{2}\right) \tag{4}
\end{align*}
$$

4. (a) Let T be a linear transformation from a vector space U to a vector space V over the field F. Prove that the range of T is a subspace of V.
(b) Examine whether the following mappings are linear or not : $\quad 2+2=4$

$$
\text { (i) } T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \text { defined by }
$$

$$
T(x, y, z)=(|x|, y+z)
$$

(6)

$$
\text { (ii) } T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { defined by }
$$

$$
T(x, y)=(x+y, x)
$$

(c) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x, y)=(x+y, x-y, y)
$$

$$
4+4=8
$$

(d) Let T be a linear operator on \mathbb{R}^{2} defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 0\right)$. Find the matrix of T with respect to the basis $\left\{v_{1}, v_{2}\right\}$, where $v_{1}=(1,1)$ and $v_{2}=(2,-1)$.
(e) Let $T: V \rightarrow U$ be a linear transformation. Show that

$$
\operatorname{dim} V=\operatorname{rank} T+\text { nullity } T
$$

Or

Prove that a linear transformation $T: V \rightarrow U$ is non-singular if and only if T carries each linearly independent subset of V onto a linear independent
subset of U.
(f) Define isomorphism of vector spaces. Prove that the mapping

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \vdash(a, b, c, d)
$$

from $M_{2}(\mathbb{R})$ to \mathbb{R}^{4} is an isomorphism.

Or

Prove that every n-dimensional vector space over a field F is isomorphic to F^{n}.

