Total No. of Printed Pages-5
6 SEM TDC MTMH (CBCS) C 13

> 2022
> (June/July)
> MATHEMATICS
> (Core)
> Paper : C-13
(Metric Spaces and Complex Analysis)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. (a) Every non-empty set can be regarded as a metric space. State true or false.
(b) Write when a metric is called a discrete metric.
(c) Write the definition of an open set in metric space.2
(d) Define complete metric space. . 2

(2)

(e) If (X, d) is a metric space and $x, y, z \in X$ be any three distinct points, then show that $d(x, y) \geq|d(x, z)-d(z, y)|$.
(f) Answer any two from the following :

$$
5 \times 2=10
$$

(i) Prove that in any metric space X, each open sphere is an open set.
(ii) Let X be any non-empty set and d a function defined on X, such that $d: X \times X \rightarrow R$ defined by

$$
\begin{aligned}
d(x, y) & =0, \text { if } x=y \\
& =1, \text { if } x \neq y
\end{aligned}
$$

Prove that d is a metric on X.
(iii) If (X, d) be a metric space and $\left\{x_{n}\right\}$, $\left\{y_{n}\right\}$ are sequences in X such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then show that

$$
\left\{d\left(x_{n} ; y_{n}\right)\right\} \rightarrow d(x, y)
$$

(iv) Prove that the limit of a sequence in a metric space, if it exists, is unique.
2. (a) Real line R is not connected. State true or false.
(b) Write one property of continuous 1
(c) Write the definition of uniform continuity in a metric space.
(e) If (X, d) is a metric space and $x, y, z \in X$ be any three distinct points, then show that $d(x, y) \geq|d(x, z)-d(z, y)|$.
(f) Answer any two from the following :

$$
5 \times 2=10
$$

(i) Prove that in any metric space X, each open sphere is an open set.
(ii) Let X be any non-empty set and d a function defined on X, such that $d: X \times X \rightarrow R$ defined by

$$
\begin{aligned}
d(x, y) & =0, \text { if } x=y \\
& =1, \text { if } x \neq y
\end{aligned}
$$

Prove that d is a metric on X.
(iii) If (X, d) be a metric space and $\left\{x_{n}\right\}$, $\left\{y_{n}\right\}$ are sequences in X such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then show that

$$
\left\{d\left(x_{n}, y_{n}\right)\right\} \rightarrow d(x, y)
$$

(iv) Prove that the limit of a sequence in a metric space, if it exists, is unique.
2. (a) Real line R is not connected. State true
or false.
(b) Write one property of continuous
mapping. 1
(c) Write the definition of uniform continuity in a metric space.

14)

(f) Prove that $f(z)=z^{2}+2 z+3$ is continuous everywhere in the finite plane.

Or
Prove that if $w=f(z)=u+i v$ is analytic in a region R, then

$$
\frac{d w}{d z}=\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}
$$

4. (a) Define an analytic function at a point.
(b) Write the interval of θ in the principal value of $\log z=\log r+i \theta$.
(c) Write $\sinh z$ in terms of exponential functions.
(d) Write the value of $\int_{C} d z$ where C is a closed curve. 1
(e) Show that the function $f(z)=e^{x+i \dot{y}}$ is analytic.
(f) Find

$$
\int_{0}^{1} z e^{2 z} d z
$$

Or

Evaluate $\int_{C} \bar{z} d z$ from $z=0$ to $z=4+2 i$ along the curve C given by $z=t^{2}+i t$.

(5)

5. (a) Obtain Taylor's series for the function

$$
f(z)=\frac{(z-2)(z+2)}{(z+1)(z+4)}
$$

when $|z|<1$.
4
(b) State and prove Liouville's theorem. 6 Or
Prove that the series

$$
z(1-z)+z^{2}(1-z)+z^{3}(1-z)+\cdots
$$

converges for $|z|<1$.
6. (a) Write the statement of Laurent's theorem.
(b) Expand

$$
f(z)=\frac{1}{(z+1)(z+3)}
$$

in a Laurent series valid for $1<|z|<3$. 6
Or

Prove that the sequence $\left\{\frac{1}{1+n z}\right\}$ is uniformly convergent to zero for all z such that $|z| \geq 2$.

$$
\star \star \star
$$

