Total No. of Printed Pages—5

6 SEM TDC MTMH (CBCS) C 13

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-13

(Metric Spaces and Complex Analysis)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

	The	e figures in the margin indicate full marks for the questions	
1.	(a)	Every non-empty set can be regarded as a metric space. State true or false.	1
	(b)	Write when a metric is called a discrete metric.	1
	(c)	Write the definition of an open set in metric space.	2
	(d)	Define complete metric space.	2

(e)	If (X, d) is a metric space and $x, y, z \in X$ be any three distinct points, then show that $d(x, y) \ge d(x, z) - d(x, y) $.		
(f)	Answer any <i>two</i> from the following: $5\times2=$:10	
	(i) Prove that in any metric space X, each open sphere is an open set.		
	(ii) Let X be any non-empty set and d a function defined on X, such that $d: X \times X \to R$ defined by $d(x, y) = 0 \text{ , if } x = y$ $= 1 \text{ , if } x \neq y$		
	Prove that d is a metric on X .		
	(iii) If (X, d) be a metric space and $\{x_n\}$, $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, then show that		
	$\{d(x_n, y_n)\} \to d(x, y)$		
	(iv) Prove that the limit of a sequence in a metric space, if it exists, is unique.		
(a)	Real line R is not connected. State true or false.		
(b)	Write one property of continuous mapping.	1	
(c)	Write the definition of uniform continuity in a metric space.	2	

(Continued)

2.

22P/785

- (e) If (X, d) is a metric space and x, y, z∈ X be any three distinct points, then show that d(x, y) ≥ |d(x, z) d(z, y)|.
 (f) Answer any two from the following:
- 5×2=10
 - each open sphere is an open set.
 - (ii) Let X be any non-empty set and d a function defined on X, such that $d: X \times X \to R$ defined by

$$d(x, y) = 0$$
, if $x = y$
= 1, if $x \neq y$

Prove that d is a metric on X.

- (iii) If (X, d) be a metric space and $\{x_n\}$, $\{y_n\}$ are sequences in X such that $x_n \to x$ and $y_n \to y$, then show that $\{d(x_n, y_n)\} \to d(x, y)$
- (iv) Prove that the limit of a sequence in a metric space, if it exists, is
- in a metric space, if it exists, is unique.

 2. (a) Real line Bisser.
- 2. (a) Real line R is not connected. State true or false.
 - (b) Write one property of continuous mapping.
 - (c) Write the definition of uniform continuity in a metric space.

^{22P}/785

(Continued)

1

1

2.

4

(f) Prove that $f(z) = z^2 + 2z + 3$ is continuous everywhere in the finite plane.

5

Or

Prove that if w = f(z) = u + iv is analytic in a region R, then

$$\frac{dw}{dz} = \frac{\partial w}{\partial x} = -i \frac{\partial w}{\partial y}$$

4. (a) Define an analytic function at a point.

1

(b) Write the interval of θ in the principal value of $\log z = \log r + i\theta$.

1

1

(c) Write sinh z in terms of exponential functions.

1

(d) Write the value of $\int_C dz$ where C is a closed curve.

(e) Show that the function $f(z) = e^{x+iy}$ is analytic.

4

(f) Find

 $\int_0^1 z e^{2z} dz$

4

Or

Evaluate $\int_C \overline{z} dz$ from z=0 to z=4+2i along the curve C given by $z=t^2+it$.

5. (a) Obtain Taylor's series for the function

$$f(z) = \frac{(z-2)(z+2)}{(z+1)(z+4)}$$

when |z| < 1.

4

6

2

(b) State and prove Liouville's theorem.

Or

Prove that the series

$$z(1-z)+z^2(1-z)+z^3(1-z)+\cdots$$

converges for |z| < 1.

- 6. (a) Write the statement of Laurent's theorem.
 - (b) Expand

$$f(z) = \frac{1}{(z+1)(z+3)}$$

in a Laurent series valid for 1 < |z| < 3. 6

Or

Prove that the sequence $\left\{\frac{1}{1+nz}\right\}$ is uniformly convergent to zero for all z such that $|z| \ge 2$.
