Total No. of Printed Pages-6

6 SEM TDC MTMH (CBCS) C 14

2022

(June/July)

MATHEMATICS

(Core)

Paper : C-14

(Ring Theory and Linear Algebra-II)

Full Marks : 80 Pass Marks : 32

Time : 3 hours

1.1

The figures in the margin indicate full marks for the questions

1. Answer any three from the following : 5×3=15

- (a) State and prove division algorithm for F[x], where F is a field.
- (b) Define principal ideal domain (PID). If F is a field, then show that F[x] is a principal ideal domain. 1+4
- (c) Define irreducible polynomial and write an example. Let F be a field. If $f(x) \in F(x)$ and deg f(x) = 2 or 3, then show that f(x) is reducible over F if and only if f(x)has a zero in F. 2+3

22P/786

(Turn Over)

(d) In $Z[\sqrt{-5}]$, prove that $1+3\sqrt{-5}$ is irreducible but not prime. 5

2. Answer any three from the following : 5×3=15

- (a) State and prove Eisenstein's criterion. 5
 - (b) Prove that a polynomial of degree n over a field has atmost n zeros counting multiplicity.
 - (c) Define unique factorization domain (UFD). Show that the ring $Z[\sqrt{-5}] = \{a+b\sqrt{-5} \mid a, b \in Z\}$ is an integral domain but not unique factorization domain. 1+4
 - (d) Define Euclidean domain. Prove that every Euclidean domain is a principal ideal domain.

3. Answer any three from the following : $6 \times 3 = 18$

(a) Suppose that V is a finite dimensional vector space with ordered basis $\beta = \{x_1, x_2, \dots, x_n\}$. Let $f_i (1 \le i \le n)$ be the *i*th co-ordinate function with respect to β be defined such that $f_i(x_j) = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Let $\beta^* = \{f_1, f_2, \dots, f_n\}$. Then prove that β^* is an ordered basis for V^* , and for any $f \in V^*$, we have $f = \sum_{i=1}^n f(x_i)f_i$.

22P/786

(Continued)

(d) In $Z[\sqrt{-5}]$, prove that $1+3\sqrt{-5}$ is irreducible but not prime.

2. Answer any three from the following : $5 \times 3 = 15$

- (a) State and prove Eisenstein's criterion. 5
- (b) Prove that a polynomial of degree n over a field has atmost n zeros counting multiplicity.
- (c) Define unique factorization domain (UFD). Show that the ring $Z[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in Z\}$ is an integral domain but not unique factorization domain. 1+4
- (d) Define Euclidean domain. Prove that every Euclidean domain is a principal ideal domain. 1+4

3. Answer any three from the following : 6×3=18

(a) Suppose that V is a finite dimensional vector space with ordered basis $\beta = \{x_1, x_2, \dots, x_n\}$. Let $f_i (1 \le i \le n)$ be the *i*th co-ordinate function with respect to β be defined such that $f_i(x_j) = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Let $\beta^* = \{f_1, f_2, \dots, f_n\}$. Then prove that β^* is an ordered basis for V^* , and for any $f \in V^*$, we have $f = \sum_{i=1}^n f(x_i)f_i$.

22P/786

(Continued)

5

(4)

Show that-

- (i) W is a T-invariant subspace of R^3
- (ii) the characteristic polynomial of T_W divides the characteristic polynomial of T.

Or

Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then show that T is diagonalizable if and only if the minimal polynomial for T has the form

 $p=(x-c_1)\cdots(x-c_k)$

where $c_1, c_2, ..., c_k$ are distinct elements of F.

5. (a) If V is an inner product space, then for any vectors α , β in V and any scalar c, prove that $||\alpha + \beta|| \le ||\alpha|| + ||\beta||$.

Or

Let V be an inner product space and let $\beta_1, \beta_2, \dots, \beta_n$ be any independent vectors in V. Then construct orthogonal vectors $\alpha_1, \alpha_2, \dots, \alpha_n$ in V such that for each $k = 1, 2, \dots, n$, the set $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ is a basis for the subspace spanned by $\beta_1, \beta_2, \dots, \beta_k$.

(Continued)

5

(5)

- (b) Define orthogonal vectors. Consider the vectors $\beta_1 = (3, 0, 4), \beta_2 = (-1, 0, 7), \beta_3 = (2, 9, 11)$ in R^3 equipped with standard inner product. Apply the Gram-Schmidt orthogonalisation process to find orthogonal vectors corresponding to the given vectors. 1+4
- (c) For any linear operator T on a finite dimensional inner product space V, prove that there exists a unique linear operator T^* on V such that $(T\alpha |\beta) = (\alpha |T^*\beta)$ for all $\alpha, \beta \in V$.
- 6. (a) Define adjoint of a linear operator T on a vector space V. Give an example of adjoint of a linear operator T on V.
 - (b) Answer any two questions from the following : 4×2=8
 - (i) Let V be a finite-dimensional inner product space. If T and U are linear operator on V, then prove that

(1) $(T+U)^* = T^* + U^*$

(2) $(T^*)^* = T$

22P/786

(Turn Over)

5

(ii) Let $\{\alpha_1, \dots, \alpha_n\}$ be an orthogonal set of non-zero vectors in an inner product space V. If β is any vector in V, then prove that

$$\sum_{k} \frac{\left| \left(\beta \left| \alpha_{k} \right) \right|^{2}}{\left| \left| \alpha_{k} \right| \right|^{2}} \leq \left| \left| \beta \right| \right|^{2}$$

(iii) Let V be a finite-dimensional inner product space, and f be a linear functional on V. Then show that there exists a unique vector β in V such that $f(\alpha) = (\alpha | \beta)$ for all α in V.

22P-1800/786