Total No. of Printed Pages-6
6 SEM TDC MTMH (CBCS) C 14

2022
(June/July)

MATHEMATICS

(Core)
Paper : C-14
(Ring Thėory and Linear Algebra-II)

$$
\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}
$$

Time: 3 hours
The figures in the margin indicate full marks for the questions

1. Answer any three from the following : $5 \times 3=15$
(a) State and prove division algorithm for $F[x]$, where F is a field.
(b) Define principal ideal domain (PID). If F is a field, then show that $F[x]$ is a principal ideal domain.$1+4$
(c) Define irreducible polynomial and write an example. Let F be a field. If $f(x) \in F(x)$ and $\operatorname{deg} f(x)=2$ or 3 , then show that $f(x)$ is reducible over F if and only if $f(x)$ has a zero in F.$2+3$

(2)

(d) In $Z[\sqrt{-5}]$, prove that $1+3 \sqrt{-5}$ is irreducible but not prime.
2. Answer any three from the following : $5 \times 3=15$
(a) State and prove Eisenstein's criterion. 5
(b) Prove that a polynomial of degree n over a field has atmost n zeros counting multiplicity.
(c) Define unique factorization domain (UFD). Show that the ring $Z[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in Z\} \quad$ is an integral domain but not unique factorization domain.
(d) Define Euclidean domain. Prove that every Euclidean domain is a principal ideal domain.
3. Answer any three from the following :- $6 \times 3=18$
(a) Suppose that V is a finite dimensional vector space with ordered basis $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Let $f_{i}(1 \leq i \leq n)$ be the th co-ordinate function with respect to β be defined such that $f_{i}\left(x_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta. Let $\beta^{*}=\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$. Then prove that β^{*} is an ordered basis for V^{*}, and for any $f \in V^{*}$, we have $f=\sum_{i=1}^{n} f\left(x_{i}\right) f_{i}$.

$2)$

(d) In $Z[\sqrt{-5}]$, prove that $1+3 \sqrt{-5}$ is irreducible but not prime.
2. Answer any three from the following : $5 \times 3=15$
(a) State and prove Eisenstein's criterion. 5
(b) Prove that a polynomial of degree n over a field has atmost n zeros counting multiplicity.
(c) Define unique factorization domain (UFD). Show that the ring $Z[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in Z\} \quad$ is an integral domain but not unique factorization domain.
(d) Define Euclidean domain. Prove that every Euclidean domain is a principal ideal domain.
3. Answer any three from the following : $6 \times 3=18$
(a) Suppose that V is a finite dimensional vector space with ordered basis $\beta=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$. Let $f_{i}(1 \leq i \leq n)$ be the th co-ordinate function with respect to β be defined such that $f_{i}\left(x_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the Kronecker delta. Let $\beta^{*}=\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}$. Then prove that β^{*} is an ordered basis for V^{*}, and for any $f \in V^{*}$, we have $f=\sum_{i=1}^{n} f\left(x_{i}\right) f_{i}$.

141

Show that-
(i) W is a T-invariant subspace of R^{3}
(ii) the characteristic polynomial of T_{W} divides the characteristic polynomial of T.

Or

Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then show that T is diagonalizable if and only if the minimal polynomial for T has the form

$$
p=\left(x-c_{1}\right) \cdots\left(x-c_{k}\right)
$$

where $c_{1}, c_{2}, \cdots, c_{k}$ are distinct elements of F.
5. (a) If V is an inner product space, then for any vectors α, β in V and any scalar c, prove that $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$

Or

Let V be an inner product space and let $\beta_{1}, \beta_{2}, \cdots, \beta_{n}$ be any independent vectors in V. Then construct orthogonal vectors $\alpha_{1}, \alpha_{2}, \cdots \alpha_{n}$ in V such that for each $k=1,2, \cdots, n$, the set $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right\}$ is a basis for the subspace spanned by $\beta_{1}, \beta_{2}, \cdots, \beta_{k}$.

(5)

(b) Define orthogonal vectors. Consider the vectors $\beta_{1}=(3,0,4), \beta_{2}=(-1,0,7)$, $\beta_{3}=(2,9,11)$ in R^{3} equipped with standard inner product. Apply the Gram-Schmidt orthogonalisation process to find orthogonal vectors corresponding to the given vectors. $1+4$
(c) For any linear operator T on a finite dimensional inner product space V, prove that there exists a unique linear operator T^{*} on V such that (T $\alpha \mid \beta)=\left(\alpha \mid T^{*} \beta\right)$ for all $\alpha, \beta \in V$.
6. (a) Define adjoint of a linear operator T on a vector space V. Give an example of adjoint of a linear operator T on V.
(b) Answer any two questions from the following :
(i) Let V be a finite-dimensional inner product space. If T and U are linear operator on V, then prove that
(1) $(T+U)^{*}=T^{*}+U^{*}$
(2) $\left(T^{*}\right)^{*}=T$

(6)

(ii) Let $\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ be an orthogonal set of non-zero vectors in an inner product space V. If β is any vector in V, then prove that

$$
\sum_{k} \frac{\|\left.\left(\beta \mid \alpha_{k}\right)\right|^{2}}{\left\|\alpha_{k}\right\|^{2}} \leq\|\beta\|^{2}
$$

(iii) Let V be a finite-dimensional inner product space, and f be a linear functional on V. Then show that there exists a unique vector β in V such that $f(\alpha)=(\alpha \mid \beta)$ for all α in V.

