Total No. of Printed Pages-7

4 SEM TDC CHMH (CBCS) C 8

2022 (June/July)

CHEMISTRY (Core)

Paper : C-8

(Inorganic Chemistry)

Full Marks : 53 Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer :

1×6=6

(a) The increasing order of the strength of the ligands I^- , CO, Cl⁻ and H₂O in the spectrochemical series is

(i) $I^- < H_2O < Cl^- < CO$

- (ii) $C1^- < I^- < H_2O < CO$
- (iii) $I^- < Cl^- < H_2O < CO$
- (iv) $I^- < Cl^- < CO < H_2O$

22P/1271

(Turn Over)

- (b) Which of the following has the highest lability?
 - (i) SF₆
 - (ii) [PF₅]⁻
 - (iii) $[SiF_6]^{2-}$
 - (*iv*) $[A1F_6]^{3-1}$
- (c) In the complex $[Ti(H_2O)_6]^{3+}$, the metal ion has
 - (i) d^1 -configuration
 - (ii) d^2 -configuration
 - (iii) d^3 -configuration
 - (iv) d^5 -configuration
- (d) The common oxidation state shown by transition elements is
 - (i) +2
 - (ii) +3
 - (iii) +4
 - (iv) +5
- (e) The number of 4*f*-electron in lanthanum is
 - (i) O
 - (ii) 1
 - (iii) 2
 - (iv) 5

22P/1271

(Continued)

(3)

(f) Non-heme iron protein is

- (i) myoglobin
- (ii) haemoglobin
- (iii) cytochrome P450
- (iv) hemerythrin

UNIT-I

2. Answer the following questions : 2×4=8

- (a) What are labile and inert complexes? Give examples. 1+1=2
- (b) Write the IUPAC names of the following compounds : 1+1=2
 - (i) $[Co(NH_3)_5SCN]Cl_2$

(ii) K₃[Co(CN)₅NO]

(c) Write the formula of the following compounds : 1+1=2

> (i) Dichlorobis(triphenylphosphine) palladium (II)

(ii) Potassium pentachloronitridoosmate (VI)

- (d) Write the name and formula of each of the following types of ligand : 1+1=2
 - (i) A bidentate ligand with one acidic and one neutral donor
 - (ii) A tridentate ligand with three neutral donors

22P/1271

(Turn Over)

- 3. Answer any two questions :
 - (a) What do you mean by crystal field stabilization energy (CFSE)? Calculate CFSE for each of the following octahedral systems in Dq units : 1+1+1=3

(i) d^5 -high spin

(ii) d⁶-low spin

- (b) [Ni(CO)₄] is tetrahedral while [Ni(CN)₄]²⁻
 ion is square planar. Explain in the light of valence bond theory. 1¹/₂+1¹/₂=3
- (c) Define stereoisomerism. Discuss the stereoisomerism exhibited by the complex ion $[Co(en)_2Cl_2]^+$. 1+2=3

4. Answer any two questions : 4×2=8

(a) What is the basis of crystal field theory? Draw the splitting patterns for octahedral, tetrahedral and square planar complexes in a crystal field.

1+3=4

 $3 \times 2 = 6$

(b) On the basis of CFT, calculate the spin only magnetic moment value $\binom{\mu}{s}$ for $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ ions. 2+2=4

22P/1271

(Continued)

(5)

(c) For the $[Cr(H_2O)_6]^{2+}$ ion, the mean pairing energy (P) is found to be 23500 cm⁻¹. The magnitude of Δ_0 is 13900 cm⁻¹. Calculate the CFSE for the complex in both high spin and low spin states. 2+2=4

UNIT-II

5. Answer any three questions : 3×3=9

- (a) Give reasons—
 - (i) Ti⁴⁺ ion is more stable than Ti³⁺ ion;
 - (ii) d-block elements show variable oxidation states. $1\frac{1}{2}+1\frac{1}{2}=3$
- (b) The decrease in the radius of elements Na(Z = 11) to Cl(Z = 17) is 0.55 Å, while the decrease for Sc(Z = 21) to Zn(Z = 30)is only 0.13 Å.

Explain the above data.

- (c) Explain the Latimer and Bsworth diagram to account the stability of various oxidation states and e.m.f.
- (d) Write all possible oxidation states exhibited by the elements of the first row transition series.

22P/1271

(Turn Over)

3

3

3

- 6. Find out the numbers of unpaired electrons and calculate the spin only magnetic moment value for the following ions : 2+2=4
 - (a) Fe^{2+}
 - (b) Mn^{2+}

UNIT-III

- 7. Answer any two questions : $2 \times 2 = 4$
 - What are the consequences (a)of lanthanide contraction?
 - (b) Sm^{2+} is a good reducing agent and Ce⁴⁺ is a good oxidizing agent. Explain.
 - (c) What are the problems in the separation of lanthanides from one another?

UNIT-IV

8. Answer any two questions :

4×2=8

What is the essential element present (a)in haemoglobin? How does it help in oxygen transport and storage? 1+3=4

22P/1271

(Continued)

- (b) Explain the role of sodium and potassium ions in biological system. 2+2=4
- (c) How does lead harm the human body? How can lead poisoning be prevented? 2+2=4

4 SEM TDC CHMH (CBCS) C 8

22P-2500/1271

(7)