2 SEM TDC CHMH (CBCS) C 4

2022
 (June/July)

CHEMISTRY

(Core)

Paper: C-4

(Physical Chemistry-II)
$\frac{\text { Full Marks : } 53}{\text { Pass Marks : } 21}$
Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. Choose the correct answer :
$1 \times 6=6$
(a) For a system to be at equilibrium, the value of ΔG at constant temperature and pressure must be
(i) $\Delta G_{T, P}>0$
(ii) $\Delta G_{T, P}<0$
(iii) $\Delta G_{T, P}=0$
(iv) $\Delta G_{T, P} \geq 0$

121

(b) The value of ΔS for an irreversible process is
(i) positive
(ii) negative
(iii) zero
(iv) None of the above
(c) The chemical potential is
(i) partial molar enthalpy
(ii) partial molar volume
(iii) partial molar free energy
(iv) partial molar internal energy
(d) For equilibrium in case of a hypothetical gaseous reaction

$$
3 A(\mathrm{~g})+B(\mathrm{~g}) \rightleftharpoons 3 C(\mathrm{~g})+D(\mathrm{~g})
$$

(i) $K_{p}=K_{c} R T$
(ii) $K_{p}=K_{c}(R T)^{2}$
(iii) $K_{p}=K_{c}$
(iv) $K_{c}=\frac{1}{K_{p}}$
(e) Regardless of the atmospheric pressure, the boiling point of a dilute solution as compared to that of pure solvent is
(i) same
(ii) lower
(iii) higher
(iv) Any of the above
(f) If z is a state function, then $\oint d z$ is equal to
(i) zero
(ii) positive
(iii) negative
(iv) infinity
2. Answer any six of the following questions:

$$
2 \times 6=12
$$

(a) Write any two differences between reversible and irreversible processes.
(b) Six moles of an ideal gas expand isothermally and reversibly from a volume of $1 \mathrm{dm}^{3}$ to a volume of $10 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$. What is the maximum work done?

(4)

(c) Establish the relationship between enthalpy change and internal energy change for a gaseous reaction.
(d) What are partial molar properties? Define chemical potential.
(e) Derive the relation between K_{p} and K_{c} for the following reaction :

$$
a A+b B \rightleftharpoons c C+d D
$$

(f) How are osmotic pressure measurements utilized for determining molar mass of a non-volatile solute?
(g) • What are extensive and intensive properties? Explain with examples. .

UNIT-I

Answer any two questions from the following : $8 \times 2=16$
3. (a) Calculate the work done when a gas expands-
(i) isothermally and reversibly from volume V_{1} to V_{2};
(ii) isothermally and irreversibly from volume V_{1} to V_{2}.
From these, show that the work done in a reversible process is greater than that in an irreversible process. $\quad 2+2+2=6$

(5)

(b) What is Joule-Thomson coefficient? Derive a relation between JouleThomson coefficient and thermodynamic quantities.
4. (a) Deduce a relation between temperature and volume for an adiabatic reversible expansion of an ideal gas.
(b) One mole of an ideal gas ($\bar{C}_{V}=12.55 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$) at 300 K is compressed adiabatically and reversibly to one-fourth of its original volume. What is the final temperature of the gas?
(c) Derive Kirchhoff's equation.
5. (a) Deduce an expression for the entropy changes associated with the changes in temperature and pressure of an ideal gas.
(b) For a reaction $\Delta H=10.5 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$ and $\Delta S=31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at 298 K , decide whether the reaction is spontaneous or not at this temperature.
(c) State and explain the third law of thermodynamics.

16)

UNIT-II

6. Answer either (a) or (b) :

3
(a) Discuss the variation of chemical potential with temperature and pressúre. $\stackrel{0}{0}$
(b) Derive Gibbs-Duhem equation.

UNIT-III

7. Answer any two questions from the following :

$$
4 \times 2=8
$$

(a) State and explain Le Chatelier's principle. With the help of this principle, work out the conditions - which would favour the formation of ammonia and nitric oxide in the following reactions :

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}), \quad \Delta H=-99 \cdot 38 \mathrm{KJ} \\
& \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}), \quad \Delta H=180 \cdot 75 \mathrm{KJ} \\
& 2+2=4
\end{aligned}
$$

(b) (i) What are exergonic and endergonic reactions?
(ii) Calculate K_{c} and K_{x} for the reaction $\quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad$ for which $K_{p}=0.157 \mathrm{~atm}$ at $27^{\circ} \mathrm{C}$ and 1 atm pressure.
(c) Derive the relation between Gibbs' free energy change and reaction quotient. From this, establish the relation between standard Gibbs' free energy change and equilibrium constant of a reaction.

$$
3+1=4
$$

UNIT-IV
8. Answer any two questions from the following :

$$
4 \times 2=8
$$

(a) What is osmotic pressure? Derive a relation between osmotic pressure and relative lowering of vapour pressure.
(b) What are isotonic solutions? A solution containing 8.77 g per dm^{3} of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) was found to be isotonic with a 5 -percent solution of an organic non-volatile solute. Calculate the molar mass of the latter.

$$
0
$$

Derive the relation between the elevation of boiling point of a dilute solution and the molality of that solution. Define molal elevation constant.

$$
3+1=4
$$

