2018

(May)

CHEMISTRY

(Major)

Course: 201

(Physical, Inorganic, Organic)

(New Course)

Full Marks: 80

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION—I

(Physical Chemistry)

(Marks : 26)

1. Choose the correct answer from the following:

1×3=3

- (a) The enthalpy of combustion of carbon is -394 kJ mol^{-1} . The heat evolved in the combustion of 6.02×10^{22} atoms of carbon is
 - (i) 3940 kJ

(ii) 394 kJ

(iii) 39·4 kJ

(iv) 0·394 kJ

•	(b)	Enthalpy change of a reaction does not depend upon the	
		(i) conditions of a reaction	
		(ii) initial and final states of the system	
		(iii) physical states of reactants and products	
		(iv) number of steps in the reaction	
	(c)	Degree of hydrolysis of a salt of weak acid and weak base	
		(i) increases with concentration	
		(ii) decreases with concentration	
		(iii) is independent of concentration	
		(iv) None of the above	
	٠	Unit—I	
Answe	er an	by two of the following: $6\times 2=$	12
2.	Cal	culate the amount of work done when a gas expands—	
	(a)	isothermally and reversibly from volume V_1 to V_2 ;	
	(b)	isothermally and irreversibly from volume V_1 to V_2 .	
		m these, show that the amount of work done in a reversible process is	
,	gre	ater than that in an irreversible process. 2+2+2	=6
3.	(a)	Establish the relationship between enthalpy change and internal energy change for a gaseous reaction.	2
	(b)	Enthalpy of formation of ethane at constant pressure is -110.46 kJ mol ⁻¹ at 298 K. Find its value at constant volume.	2
	(c)	Differentiate between bond dissociation energy and bond energy giving one example.	2
4.	(a)	Derive the relationship between Joule-Thomson coefficient and thermodynamic properties.	2
	(b)	Prove that Joule-Thomson coefficient is zero for an ideal gas.	3

31/2

- 5. (a) Derive an expression for the pH of an aqueous solution of a salt of strong acid and weak base.
 - (b) Explain the acidic or basic nature of aqueous solutions of (i) CH₃COONa and (ii) (NH₄)₂SO₄.
- 6. (a) Equimolar solution of NH₄OH and NH₄Cl forms a buffer solution. Derive an expression relating the pH of this buffer solution with the concentration of its components.
 - (b) Define buffer capacity.
 - (c) In an aqueous solution, molar concentration of NH₄OH is 0.2 M and that of $(NH_4)_2SO_4$ is 0.1 M. Calculate the pH of buffer solution. $K_b = 1.0 \times 10^{-5}$.
- 7. (a) Distinguish solubility product from ionic product.
 - (b) A dilute solution of HCl contains Cu²⁺, Pb²⁺, Zn²⁺ and Ni²⁺ ions. On passing H₂S gas in this solution, which metal ions will be precipitated as metal sulphides and why?
 - (c) The solubility products of Ag_2CrO_4 and AgBr are 32×10^{-12} (mole L^{-1})³ and 4×10^{-14} (mole L^{-1})² respectively. Calculate the ratio of molarities of their saturated solutions.

2

2

2

SECTION—II

(Inorganic Chemistry)

(Marks: 27)

8.	Choose	the	correct	answer	from	the	following	
----	--------	-----	---------	--------	------	-----	-----------	--

1×3=3

- (a) The number of five-membered faces present in C₆₀ is
 - (i) 12
 - (ii) 20
 - (iii) 24
 - (iv) 36
- (b) Pyrosilicate contains
 - (i) SiO₄⁴ units
 - (ii) SiO_3^{2-} units
 - (iii) $Si_2O_7^{6-}$ units
 - (iv) Si₄O₁₁ units
- (c) The metal oxide which cannot be reduced by carbon is
 - (i) ZnO
 - (ii) PbO
 - (iii) Fe₂O₃
 - (iv) Cr_2O_3

UNIT-I

9. Answer any three of the following:

3×3=9

(a) Explain the formation of 3C-2e bond in diborane (B_2H_6) .

3

(b) Explain the structure of the following compounds:

1½×2=3

- (i) XeO₃
- (ii) XeF₄

	(c)	Classify the following by structural type:	1+1+1=3
		(i) $B_{10}H_{18}$ (ii) $B_{11}H_{13}^{2-}$	
		(iii) $C_2B_7H_{12}^-$	•
	(d) (e)	Explain why (any two): (i) Borazine is called inorganic benzene. (ii) Hydrazine is used as rocket fuel. (iii) XeF ₆ cannot be stored in glass vessel. How is triphenyl phosphine prepared? Mention its two uses.	1½×2=3 1+2=3
10	•	ite short notes on (any two):	2×2=4
10.	(a) (b)	Zeolite Hydrazoic acid Wade's rule	
	(c)		
		Unit—II	3×2=6
11.	Ho	w will you obtain the following (any two)?	3^Z=0
	(a)		
	(b)		
	(c)	Molybdenum from molybdenite ore	
12.	Giv	ve the preparations of the following (any two):	1½×2=3
	(a)	Chromyl chloride	
	(b)	Ni-DMG	
	(c)	KMnO ₄	
13.	Wı	rite a short note on (any one):	2
	(a)	van Arkel process	
	(b)	Zone refining	

SECTION—III

(Organic Chemistry)

(Marks : 27)

14. Choose the correct answer from the following:

1×3=3

In the above reaction, compound X is

(b) Which compound would give 5-keto-2-methylhexanal on ozonolysis?

(c) The product of the reaction

is

- (i) (+)-1,2-diphenylethane-1,2-diol
- (ii) (-)-1,2-diphenylethane-1,2-diol
- (iii) (±)-1,2-diphenylethane-1,2-diol
- (iv) meso-1,2-diphenylethane-1,2-diol

15. Answer any six of the following:

 $2 \times 6 = 12$

(a) Account for the following observations:

$$\begin{array}{c} \text{CH}_2 \\ + \text{ HCl} \end{array} \longrightarrow \begin{array}{c} \text{Cl} \\ \text{CH}_3 \end{array}$$

(b) 2-Bromo-2-methylbutane undergoes E2 elimination of HBr in the presence of t-BuO to give an excess of less-substituted alkene (the Hofmann product), even though the leaving group is a neutral one. Explain.

Write the mechanism of the following reaction:

$$\begin{array}{c|c}
CH_3 & CH_3 \\
\hline
& \Delta \\
\hline
& -HBr
\end{array}$$

- (d) Write two synthetic importances of Wittig reaction giving suitable example.
- (e) Write a short note on Heck reaction.
- Write the mechanism of the following reaction:

$$\begin{array}{c} H \\ C = C \\ CH_3 \end{array} \xrightarrow{\text{CH}_3} \begin{array}{c} \text{1. OsO}_4/\text{Et}_2\text{O} \\ \text{2. H}_2\text{O} \end{array} \xrightarrow{\text{HO}} \begin{array}{c} \text{OH} \\ \text{CH}_3 \end{array} \xrightarrow{\text{CH}_3} \begin{array}{c} \text{OH} \\ \text{CH}_3 \end{array}$$

(g) Complete the following reaction:

iplete the following reaction:

$$CH_3 \longrightarrow CH_2CHCH_3 \longrightarrow A \xrightarrow{Cul} B \xrightarrow{CH_3(CH_2)_3CH_2Br} C$$
 $CH_3 \longrightarrow CH_3CHCH_3 \longrightarrow CH_3CH_2Br \longrightarrow CH_3CH_2Br$

(h) Give examples of regioselective and stereoselective reactions.

16. Answer any two of the following:

- (a) Why is boat conformation of cyclohexane less stable than that of chair conformation?
- (b) Explain why equatorial methylcyclohexane is more stable than axial methylcyclohexane.
- (c) Complete the following reaction:

$$\begin{array}{c}
\text{OH} \\
& \xrightarrow{\text{conc. H}_2 \text{SO}_4} A \xrightarrow{\text{H}_2/\text{Ni}} B \xrightarrow{\text{Alk. KMnO}_4} C
\end{array}$$

- (d) Synthesize cyclopentane from a calcium salt of adipic acid.
- 17. Answer any four of the following:

2×4=8

(a) How will you explain the directive influence of-

(i)
$$-CH=CH_2$$
;

when attached to benzene ring towards electrophilic substitution reaction?

- (b) Synthesize o-nitroaniline using sulphonation and desulphonation processes.
- (c) How would you prepare o-acyltoluene from toluene, though the o-position is a less-effective position?
- (d) Classify the following compounds as aromatic, anti-aromatic and non-aromatic:

8P/670

(e) Explain why the activating order for the following groups is

O->-OH>-OCOR

(Old Course)

Full Marks: 80

Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

SECTION-I

(Physical Chemistry)

(Marks: 26)

1. Choose the correct answer from the following:

1×3=3

- (a) The enthalpy of combustion of carbon is -394 kJ mol⁻¹. The heat evolved in the combustion of 6.02×10^{22} atoms of carbon is
 - (i) 3940 kJ

(ii) 394 kJ

(iii) 39·4 kJ

- (iv) 0·394 kJ
- (b) Enthalpy change of a reaction does not depend upon the
 - (i) conditions of a reaction
 - (ii) initial and final states of the system
 - (iii) physical states of reactants and products
 - (iv) number of steps in the reaction
- (c) At equilibrium, Gibbs free energy (ΔG)
 - (i) is > 0
 - (ii) is < 0
 - (iii) is zero
 - (iv) depends upon reaction

Answer any two of the following:

6×2=12

2

2

- 2. Calculate the amount of work done when a gas expands—
 - (a) isothermally and reversibly from volume V_1 to V_2 ;
 - (b) isothermally and irreversibly from volume V_1 to V_2 .

From these, show that the amount of work done in a reversible process is greater than that in an irreversible process. 2+2+2=6

- 3. (a) Establish the relationship between enthalpy change and internal energy change for a gaseous reaction.
 - (b) Enthalpy of formation of ethane at constant pressure is -110.46 kJ mol⁻¹ at 298 K. Find its value at constant volume.
 - (c) Differentiate between bond dissociation energy and bond energy giving one example.
- 4. (a) Derive the relationship between Joule-Thomson coefficient and thermodynamic quantities.
 - (b) Prove that Joule-Thomson coefficient is zero for an ideal gas.

UNIT-II

Answer any two questions from the following:

5½×2=11

- 5. (a) Deduce an expression for entropy increase during the isothermal mixing of two ideal gases.
 - (b) Enthalpy of fusion of ice is 6.025 kJ mol⁻¹. Calculate the entropy change when 9 g ice melts into water at 273 K.
- 6. (a) Deduce the following relation:

 $\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$

(b) Explain how the third law of thermodynamics can be used for the evaluation of absolute entropy of a substance.

31/2

2

- 7. (a) Distinguish between Helmholtz free energy and Gibbs free energy. Discuss the criteria of spontaneity in terms of Gibbs free energy. 2+11/2=31/2
 - (b) For the reaction $2A+B \rightarrow C$ at 298 K, $\Delta H = 400 \text{ kJ mol}^{-1}$ and $\Delta S = 0.2 \text{ kJ K}^{-1} \text{ mol}^{-1}$. At what temperature will the reaction become are considering AH and AS to be constant over the temperature

•		rang	e?	2
			SECTION—II	
			(Inorganic Chemistry)	
			(Marks : 27)	
8.	Cho	ose t	the correct answer from the following :	1×3=3
• .	(a)	The	shape of XeF ₄ molecule is	
•		(i)	tetrahedral ,	
		(ii)	octahedral	
		(iii)	square plannar	
		(iv)	trigonal	
	(b)	In N	i(CO) ₄ , the oxidation state of nickel is	
		(i)	+4	
		(ii)	+3	
		(iii)	+2	
		(iv)	0	
	(c)	The	metal which cannot be extracted by carbon reduction process is	
		(i)	Al	
		(ii)	Zn	
		(iii)	Pb	
		(iv)	Ag	
9.			any three of the following:	3×3=9
	(a)	Give	the method of preparation and explain the structure of borazine	•
	(~)			1+2=3

(b) Explain the bonding structure of diborane (B₂H₆).

	(4)	Discuss the structure of—	
		(i) XeF ₄ ;	
		(ii) XeOF ₄ .	1½×2=3
	(d)	Give the structures of the following:	1+1+1=3
		H_3PO_2 , H_3PO_4 , $H_4P_2O_7$	
	(e)	Give one method of preparation, chemical property and use of hyd	lrazoic
		acid.	1+1+1=3
10.	Wr	rite short notes on (any two):	2×2=4
	(a)	Fullerene (C ₆₀)	
	(b)	Tetrasulphur tetranitride (S ₄ N ₄)	
	(c)	Wade's rule	
		Unit—II	
11.	(a)	How will you obtain the following (any two)?	3×2=6
		(i) Chromic oxide from its ore	
		(ii) Nickel from pentlandite	
		(iii) Manganese from pyrolusite	
	(b)	Write short notes on (any two):	2×2=4
		(i) van Arkel process	
		(ii) Hydrometallurgy	
		(iii) Carbon reduction	
	(c)	Complete the following reaction:	
	(4)		1

SECTION—III

(Organic Chemistry)

(Marks: 27)

12. Choose the correct answer from the following:

 $1 \times 3 = 3$

- (a) Which of the following is used for the conversion of 2-hexyne into trans-hexene-2?
 - (i) H_2 / Pd / BaSO₄
 - (ii) Li or Na / Liq. NH₃
 - (iii) NaBH₄ / CH₃OH
 - (iv) LiAlH₄
- (b) Hydroboration of propene forms
 - (i) propan-1-ol
 - (ii) propane-1,2-diol
 - (iii) propan-2-ol
 - (iv) 1,2-diacetoxy mercury propane

(c)
$$\longrightarrow$$
 X

In the above reaction, compound X is

13. Answer any six of the following:

2×6=12

- (a) Addition of HBr to 3,3-dimethyl-but-1-ene gives isomeric alkyl halides. Explain.
- (b) Addition of bromine in CCl₄ to cis-2-butene gives (±)-2,3-dibromobutane while that for trans-2-butene gives meso-2,3-dibromobutane. Explain this with mechanism.

- (c) Identify X, Y and Z in the following synthetic reaction scheme : $CH_3 \longrightarrow C \Longrightarrow CH \xrightarrow{i. NaNH_2} ii. CH_3 CH_2 \longrightarrow Br > X \xrightarrow{H_2/Pd \longrightarrow BaSO_4} Y \xrightarrow{Alk. KMnO_4} Z$
- (d) Write two synthetic importances of Wittig reaction giving suitable example.
- (e) Prepare n-pentane with the help of Corey-House synthesis.
- (f) X is an alkene and on ozonolysis, it gives a mixture of acetaldehyde and acetone as a product. Identify X and write down the reactions.
- (g) Complete the following reaction and suggest the mechanism:

$$CH_{3} \xrightarrow{C} CH_{2} \xrightarrow{CH_{2}} Br \xrightarrow{OH^{-}} ?$$

$$CH_{3} \xrightarrow{C} CH_{3}$$

- (h) Give evidences to show that bromination of cis- and trans-butene-2 is stereoselective.
- 14. Answer any three questions from the following:

2×3=6

- (a) Draw the energy profile for the conformations of cyclohexane. Why is boat conformation less stable than chair conformation?
- (b) Synthesize cyclopentane starting from diethyladipate.
- (c) "t-butyl cyclohexane exists 100% in equatorial conformation." Explain.
- (d) Define angle strain. Calculate the angle strain for cyclobutane ring.
- 15. Answer any three from the following:

2×3=6

(a) Classify the following compounds as aromatic, anti-aromatic or non-aromatic:

(b) Which of the following groups are o-/p- and m-directing towards aromatic electrophilic substitution?

$$-\text{COCH}_3$$
, $-\text{CH}_3$, $-\text{OCH}_3$, $-\text{CN}$

(c) Complete the following reaction and suggest the mechanism:

$$+ CH_3CH_2CH_2$$
 $-Cl$ $\xrightarrow{An.AlCl_3}$?

(d) Arrange the following compounds in order of increasing tendency to undergo electrophilic aromatic substitution reaction with proper explanation:

$$\bigcirc, \quad \bigcirc^{CH_3}, \quad \bigcirc^{NO_2}$$
