Total No. of Printed Pages—15 5 SEM TDC CHM M 1 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 501

(Physical Chemistry-II)

(New Course)

Full Marks : 48 Pass Marks : 14

Time : 2 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer of the following : 1×5=5

- (a) For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\frac{d[NH_3]}{dt} = 4 \times 10^{-4} \text{ moldm}^{-3} \text{ s}^{-1}$. The rate of decomposition of N_2 is
 - a decomposition of N₂ is
 - (i) $6 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$
 - (ii) 8×10^{-4} mol dm⁻³ s⁻¹
 - (iii) 2×10^{-4} mol dm⁻³ s⁻¹
 - (*iv*) 10^{-4} mol dm⁻³ s⁻¹

P9/273

(Turn Over)

- (b) Which of the following 0.01 m aqueous solutions will have the lowest freezing point?
- (!) KNO³
- $\varepsilon(\varepsilon ON)$ IA (ii)
- (iii) C6H12O6
- (iu) Ba (NO3)2
- (c) The exothermic formation of CIF₃ is represented by the reaction $Cl_2(g) + 3F_2(g) \Rightarrow 2CIF_3(g); \Delta_r H = -329 kJ$ Which of the following will increase the quantity of CIF₃ in an equilibrium mixture of Cl₂, F₂ and CIF₃?
- (i) Increasing the temperature
- (ii) Removing Cl₂
- (iii) Increasing volume of the container
- (iv) Adding F2
- (d) Adsorption is accompanied by
- (i) decrease in enthalpy and increase
 (ii) increase in enthalpy and increase
- и епітору (iii) decrease in enthalpy and decrease in entropy
- (iv) increase in enthalpy and decrease in entropy

(panuituo))

64/513

- (e) The gold numbers of A, B, C and D are 0.04, 0.002, 10 and 25 respectively. The protecting powers of A, B, C and D are in the order
 - (i) A > B > C > D

(ii) B > A > C > D

- (iii) D > C > B > A
- (iv) C > A > B > D
- 2. Answer any *five* questions of the following : 2×5=10
 - (a) Show that a first-order reaction can be studied even when the initial concentration of the reactant is unknown.
 - (b) A solution contains 6 g urea and 18 g glucose in 1000 cc of water at 27 °C. Calculate the osmotic pressure of the solution.
 - (c) Show that

$$\left(\frac{\partial \mu_i}{\partial p}\right)_{T, n_1, n_2, \cdots} = \overline{V}_i$$

- (d) Heat of adsorption is greater for chemisorption than physisorption. Why?
- (e) State and explain Hardy-Schulze rule.

P9/273

(Turn Over)

- (4)
- (f) Describe how the activation energy of a reaction may be determined.
- (g) What is fugacity? Write its physical significance.

UNIT-I

- **3.** Answer any *two* questions of the following : 6×2=12
 - (a) Using a suitable mechanism for the reaction $H_2 + Br_2 \rightarrow 2HBr$; and assuming steady-state approximation for H and Br, derive the following rate expression for the formation of HBr

$$\frac{d[\text{HBr}]}{dt} = \frac{k[\text{H}_2][\text{Br}_2]^{\frac{1}{2}}}{1 + k' \frac{[\text{HBr}]}{[\text{Br}_2]}}$$

where k and k' are constants.

- (b) (i) Show that for a first-order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.
 - (ii) Discuss the limitations of the bimolecular collision theory of gaseous reaction.
 - (iii) Give one example of pseudounimolecular reaction.
 - (iv) What is steady-state approximation?

(Continued)

6

2

2

1

(c) The following mechanism has been suggested for the decomposition of O₃:

$$O_3 \xleftarrow{k_1}{k_1} O_2 + O$$
$$O_3 + O \xrightarrow{k_2} 2O_2$$

Assuming $k_{-1}[O_2] > k_2[O_3]$, show that the rate of the overall reaction is

$$-\frac{d[O_3]}{dt} = \frac{k[O_3]^2}{[O_2]}$$

What could be concluded from the appearance of $\frac{1}{[O_2]}$ in the rate equation? 5+1=6

UNIT-II

4. Answer any one question of the following :

- (a) (i) State Nernst distribution law. How is the law modified when the solute undergoes association in one of the solvents? 1+3=4
 - (ii) State Henry's law.
- (b) Explain the term 'molal elevation constant'. Derive the relation between the boiling point elevation of a solution and the mole fraction of the dissolved solute. How is the expression utilized for determining molar mass of non-volatile solute? 1+3+1=5

P9/273

(Turn Over)

5

UNIT-III

5. Answer any *two* questions of the following :

 $3\frac{1}{2} \times 2 = 7$

 (a) With the help of Le Chatelier's principle, work out the condition which would favour the formation of SO₃(g) in the reaction

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g);$$

$$\Delta_r H = -189.4 \text{ kJ} \qquad 3\frac{1}{2}$$

- (b) Explain the term 'chemical potential'. Derive Gibbs-Duhem equation for twocomponent system. 1+2¹/₂=3¹/₂
- (c) Deduce the relationship between ΔG° and K_c of a reversible reaction. $3\frac{1}{2}$

UNIT-IV

6. Answer any one question of the following : 4 Derive Langmuir adsorption isotherm (a)and show that Freundlich isotherm is a special case of this isotherm. 3+1=4Write four differences between (b)(i) physical adsorption and chemical adsorption. 2 Give reason why a finely divided (ii) substance is more effective as an adsorbent. 2 P9/273 (Continued)

(7)

UNIT-V

7.	Ans	wer a	any one question of the following :	5
	(a)	(i)	Distinguish between peptization and coagulation of colloids.	2
		(ii)	Explain why lyophilic sols are more stable than lyophobic sols.	2
		(iii)	Define zeta potential.	1
	(b)	Writ	te short notes on the following : $2\frac{1}{2}$	2=5
		(i)	Protective action of lyophilic colloid	

(ii) Donnan membrane equilibria

. P9/273

(Turn Over)

(Old Course)

Full Marks : 48 Pass Marks : 19

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer of the following : $1 \times 5 = 5$

- (a) For the reaction, $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$; $\frac{d[NH_3]}{dt} = 4 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$. The rate of decomposition of N_2 is (i) $6 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$ (ii) $8 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$ (iii) $2 \times 10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$ (iii) $10^{-4} \text{ mol dm}^{-3} \text{ s}^{-1}$
- (b) Which of the following 0.01 m aqueous solutions will have the lowest freezing point?
 - (i) KNO3
 - (ii) Al(NO₃)₃
 - (iii) $C_6H_{12}O_6$
 - (iv) Ba(NO3)2

P9/273

(Continued)

(8)

- (c) A buffer solution is prepared by mixing equal concentration of acid (ionization constant K_a) and a salt. The pH of buffer is
 - (i) $pK_a + 7$
 - (ii) $14 pK_a$
 - (iii) pKa
 - (iv) $pK_a + 1$

(d) Adsorption is accompanied by

- (i) decrease in enthalpy and increase in entropy
- (ii) increase in enthalpy and increase in entropy
- (iii) decrease in enthalpy and decrease in entropy
- (iv) increase in enthalpy and decrease in entropy
- (e) The gold numbers of A, B, C and D are 0.04, 0.002, 10 and 25 respectively. The protecting powers of A, B, C and D are in the order
 - (i) A > B > C > D
 - (ii) B > A > C > D
 - (iii) D > C > B > A
 - (iv) C > A > B > D

(Turn Over)

P9/273

- **2.** Answer any *five* questions of the following : 2×5=10
 - (a) Show that half-life period $(t_{1/2})$ of a firstorder reaction is independent of the initial concentration of the reactant.
 - (b) A solution contains 6 g urea and 18 g glucose in 1000 cc of water at 27 °C. Calculate the osmotic pressure.
 - (c) An aqueous solution of CH₃COONa is basic. Why?
 - (d) Heat of adsorption is greater for chemisorption than physisorption. Why?
 - (e) State and explain Hardy-Schulze rule.
 - (f) Describe how the activation energy of a reaction may be determined.
 - (g) Distinguish between solubility product and ionic product.

P9/273

(Continued)

UNIT-I

3. Answer any *two* questions of the following : 6×2=12

(a) Using a suitable mechanism for the reaction $H_2 + Br_2 \rightarrow 2HBr$; and assuming steady-state approximation for H and Br, derive the following rate expression for the formation of HBr :

$$\frac{d[\text{HBr}]}{dt} = \frac{k[\text{H}_2][\text{Br}_2]^{\frac{1}{2}}}{1 + k' \frac{[\text{HBr}]}{[\text{Br}_2]}}$$

where k and k' are constants.

- (b) (i) Show that for a first-order reaction, the time required for 99.9% completion of the reaction is 10 times that required for 50% completion.
 - (ii) Discuss the limitations of the bimolecular collision theory of gaseous reaction.
 - (iii) Give one example of pseudounimolecular reaction.
 - (iv) What is steady-state approximation?

(Turn Over)

P9/273

6

2

2

1

(c) The following mechanism has been suggested for the decomposition of O_3 :

C

$$O_3 \xrightarrow{k_1} O_2 + O$$

$$O_3 + O \xrightarrow{k_2} 2O_2$$

Assuming $k_{-1}[O_2] > k_2[O_3]$, show that the rate of the overall reaction is

$$-\frac{d[O_3]}{dt} = \frac{k[O_3]^2}{[O_2]}$$

What could be concluded from the appearance of $\frac{1}{[O_2]}$ in the rate equation? 5+1=6

UNIT-II

4. Answer any *one* question of the following : 5

- (a) (i) State Nernst distribution law. How is the law modified when the solute undergoes association in one of the solvents?
 - (ii) State Henry's law.

P9/273

(Continued)

- (13)
- (b) Explain the term 'molal elevation constant'. Derive the relation between the boiling point elevation of a solution and the mole fraction of the dissolved solute. How is the expression utilized for determining molar mass of non-volatile solute? 1+3+1=5

UNIT-III

- 5. Answer any *two* questions of the following : $3\frac{1}{2}\times2=7$
 - (a) Derive an expression for the pH of an aqueous solution of a salt of strong acid and weak base.
 3¹/₂
 - (b) Define ionic product of water. Explain the effect of temperature on ionic product of water. Show that

$$pK_w = pH + pOH$$
 $1 + 1 + 1 \frac{1}{2} = 3 \frac{1}{2}$

- (c) (i) Define buffer capacity. 1
 - (ii) Derive Henderson equation for a basic buffer solution. 2¹/₂

(Turn Over)

P9/273

•

(14)

UNIT-IV

6. Answer any one question of the following : 4

- (a) Derive Langmuir adsorption isotherm and show that Freundlich isotherm is a special case of this isotherm. 3+1=4
- (b) (i) Write four differences between physical adsorption and chemical adsorption.
 - (ii) Give reason why a finely divided substance is more effective as an adsorbent.

UNIT-V

7.	Answe	r any one question of the following :	5
	(a) (i) Distinguish between peptization and coagulation of colloids.	2
	(i	i) Explain why lyophilic sols are more stable than lyophobic sols.	2
	(ii	ii) Define zeta-potential.	1

P9/273

(Continued)

2

٠

(15)

- (b) Write short notes on the following : $2\frac{1}{2}\times2=5$
 - (i) Protective action of lyophilic colloid
 - (ii) Donnan membrane equilibria

5 SEM TDC CHM M 1 (N/O)

P9-5500/273

Total No. of Printed Pages—8 5 SEM TDC CHM M 3 (N/O)

2018

(November)

CHEMISTRY

(Major)

Course: 503

(Inorganic Chemistry-II)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks : 48 Pass Marks : 14

Time: 2 hours

- 1. Select the correct answer from the following : 1×5=5
 - (a) The oxidation states of metal atoms in halide and oxide clusters have
 - (i) low formal oxidation states +1, 0, -1
 - (ii) high formal oxidation states +2 to +3
 - (iii) low formal oxidation states +3 to +5
 - (iv) None of the above

P9/373

(Turn Over)

- (b) Bromocresol is an example of
 - (i) redox indicator
 - (ii) neutralization indicator
 - (iii) metal ion indicator
 - (iv) adsorption indicator
- (c) $Co(CO)_3$ is isolobal with
 - (i) CH_2^+
 - (ii) CH₂
 - (iii) CH
 - (iv) CH3
- (d) C₅₄H₄₅ClP₃Rh is
 - (i) Vaska's compound
 - (ii) Wilkinson's catalyst
 - (iii) Cupferron
 - (iv) Zeise's salt
- (e) 4-(4-nitrophenylazo) resorcinol is mainly used for determining the presence of
 - (i) Ca in solution
 - (ii) Mg in solution
 - (iii) Na in solution
 - (iv) Li in solution

P9/373

(Continued)

(3)

2.	Answer	the	following	questions	the Report in	2×4=8
----	--------	-----	-----------	-----------	---------------	-------

- (a) Outline the conditions necessary for isolobality of two molecular fragments.
- (b) Give an example of reaction in which $HCo(CO)_4$ is used as catalyst.
- (c) Give the classification of metal cluster compounds.
- (d) Write the preparation of a cobalt nitrosyl compound.
- **3.** Answer any three questions : 3×3=9
 - (a) Define oxidative addition and reductive elimination reactions with examples.

11/2+11/2=3

- (b) Draw the reaction path for hydrogenation of olefin with the help of Wilkinson's catalyst.
- (c) What is 18-electron rule? Examine the 18-electron rule in the following compounds : 1+1/2×4=3
 - (i) $Co_2(CO)_8$
 - (ii) Mn(CO)₆
 - (iii) $Fe_2(CO)_9$
 - (iv) $Fe(CO)_2$ (α -C₅H₅) (π -C₅H₅)
- (d) Discuss the structure and bonding of anion of Zeise's salt.

(Turn Over)

P9/373

(4)

ł .	Ans	wer the following questions : 4×2=8	
4	(a)	Explain the structure and bonding of ferrocene. (Give emphasis on orbital diagram, orbital symmetry and energy.) 4	
	(b)	(i) Outline the PSEP theory. 2 (ii) Predict the structures of the following clusters in the light of PSEP theory : 2 (1) $[Fe_4(CO)_{13}]^{2-}$ (2) $[Os_5(CO)_{16}]$	
5.	Ans (a)	swer any <i>two</i> questions : $3 \times 2 = 6$	
	(0)	carbonyl cluster. Discuss the structure	
		of the cluster. 1+2=3	
	(b)	What are nitrosyl complexes? Give the preparation of nitrosoferrous sulphate.	
	(c)	Give a common discussion for structure and bonding of metal nitrosyl compound.	
6.	An	swer any two questions : 3×2=6	
	(a)	Discuss about the nature and type of indicator used in the titration of—	
		<i>(i)</i> strong acid and weak base;	
		(ii) strong acid with strong base.	
	(b)	Define accuracy, precision and mean deviation.	

P9/373

4.

5

(Continued)

Analysis of a sample of CaCl₂ gave (c)the following percentage values for Ca content : 10.08, 10.12, 10.21, 10.16, 10.09

10.14, 10.18, 10.11, 10.14, 10.07 Calculate the standard deviation.

(d) Write a note on adsorption indicator.

- Discuss the uses of the following reagents 7. in inorganic analysis (any three) : 2×3=6
 - (a) Magneson
 - (b) 1,10-phenanthroline
 - (c) 8-hydoxyquinoline
 - (d) Salicylaldoxime
 - (e) Dithizone

(Old Course)

Full Marks: 48 Pass Marks: 19

Time: 3 hours

1. Select the correct answer from the following :

 $1 \times 5 = 5$

- The total electron count of a cluster is (a)12n + 2(n + 1). The structure will be (ii) arachno (i) hypo (iv) closo
 - (iii) nido

P9/373

(Turn Over)

(b) Sodium nitroprusside contains which of the following species?

(i)	NO	(ii)	NO ⁺
(iii)	NO ⁻	(iv)	NO ²⁻

- (c) Methylene blue is an example of
 - (i) adsorption indicator
 - (ii) redox indicator
 - (iii) acid-base indicator
 - (iv) metal-ion indicator
- (d) Wilkinson's catalyst is
 - (i) $[HCo(CO)_4]$
 - (ii) [RhCl(PPh₃)₃]
 - (iii) [Rh(PPh3)3H2O]Br
 - (iv) $[IrCl(CO)(PPh_3)_2]$
- (e) $Co(CO)_3$ is isolobal with (i) CH_2^+ (ii) CH_2 (iii) CH (iv) CH_3
- 2. Answer the following questions :

2×5=10

- (a) Explain oxidative addition reaction with the help of Vaska's compound.
- (b) Give a method of preparation of nitrosoferrous sulphate.
- (c) Mention the conditions necessary for isolobality of two molecular fragments.

P9/373

(Continued)

(7)

- (d) Fe₂(CO)₉ contains both bridging and terminal CO. Justify the statement.
- (e) Define standard deviation and mean deviation.

3. Answer any three questions : 3×3=9

- (a) Discuss the bonding in Zeise's salt in the light of DCD model.
- (b) Give the reaction path of hydrogenation of olefin with the help of Wilkinson's catalyst.
- (c) Discuss about the bonding in mononuclear metal carbonyls.
- (d) Give the preparations of ferrocene and Zeise's salt.

4. Answer any three questions : 3×3=9

- (a) Discuss the bonding between NO and the metal atom showing NO as
 (i) 3-electron donor, (ii) 2-electron donor and (iii) 1-electron donor.
- (b) What is metal cluster? Discuss about their classification. 1+2=3
- (c) Outline the PSEP theory.
- (d) Give one preparation of sodium nitroprusside. Discuss briefly about its structure.

P9/373

(Turn Over)

5. Answer any three questions : 3×3=9

- (a) What do you mean by an error? How are they classified? 1+2=3
- (b) Discuss the choice of indicator in acid-base titrations.
- (c) Discuss the structural change in diphenylamine indicator which is used in the titration of Fe²⁺ with potassium dichromate in acidic medium.
- (d) Write a short note on adsorption indicator.
- 6. Discuss the uses of the following reagents in inorganic analysis (any three) : 2×3=6
 - (a) 1-nitroso-2-naphthol
 - (b) Cupferron
 - (c) Oxine
 - (d) Dithizone
 - (e) Magneson

P9-5500/373

5 SEM TDC CHM M 3 (N/O)

Total No. of Printed Pages—16 5 SEM TDC CHM M 5 (N/O)

2018

(November)

CHEMISTRY (Major)

Course : 505

(Organic Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks : 48 Pass Marks : 14

Time : 2 hours

1. Select the correct answer from the following :

 $1 \times 5 = 5$

- (a) Thermal (conrotatory) ring opening of trans-3,4-dimethyl cyclobutene gives
 - (i) Z,Z-hexa-2,4-diene
 - (ii) E, E-hexa-2, 4-diene
 - (iii) E,Z-hexa-2,4-diene
 - (iv) Z, E-hexa-2, 4-diene

P9/374

(Turn Over)

(b) The product of the reaction $C_6H_{12}O_6 \text{ (glucose)} \xrightarrow{1) \text{HCN}} \xrightarrow{P/\text{HI}} ?$

is

(i) D-glucitol

(ii) D-gluconic acid

(iii) n-heptanoic acid

(iv) 2-methyl heptanoic acid

- (c) a-Terpineol is a
 - (i) diterpenoid
 - (ii) monoterpenoid

(iii) sesquiterpenoid

(iv) terpenoid

- (d) Artimisinin is
 - (i) an antimalarial drug

(ii) an antibacterial drug

(iii) a sulpha drug

- (iv) an antiseptic
- (e) 2-Acetoxy benzoic acid is
 - (i) antiseptic
 - (ii) aspirin
 - (iii) paracetamol
 - (iv) disinfectant

P9/374

(Continued)

(2)

(3)

UNIT-I add tober4

Answer any one question

2. (a) Draw the MO of 1,3-butadiene indicating HOMO in the ground and excited states.

(b) Predict the stereochemical outcome from the following electrocyclic reaction :

²E, 4Z, 6E octatriene

- (c) The Diels-Alder reaction is a concerted

 [4+2] process. It proceeds with retention
 of configuration of both the diene and
 the dienophile. Explain with suitable
 examples. 1+1=2
- (d) Complete the following reaction and suggest the mechanism :

(Turn Over)

2

1

(a) Predict the stereochemical products obtained in the following electrocyclic reactions : 1×2=2

- (b) What is a symmetry forbidden reaction? With the help of FMO approach, show that [4+2] cycloaddition is photochemically forbidden. 1+2=3
- (c) Complete the following reaction :

(d) What diene and dienophile would you employ to synthesize the following compound?

P9/374

(Continued)

1

UNIT-II

(5)

Answer any one question

- 4. (a) Sketch the stable conformational structure of α -D-mannopyranose.
 - (b) How would you methylate the —OH groups of α-D-glucopyranose other than enomeric —OH group?
 - (c) How is the configuration of D-glucose. determined? Explain.

Or

Discuss the pyranose structure of D-glucose.

- (d) Define epimerization. Explain it considering the conversion of D-mannose to D-glucose. 1+2=3
- (e) What happens when D-erythrose is subjected to Ruff degradation? 2
- 5. (a) Convert D-fructose to D-glucose and D-mannose.
 - (b) Complete the following reactions :

D-Erythrulose HCN Epimeric cyanohydrin

1) $Ba(OH)_2$ \rightarrow Epimeric polyhydroxy $\xrightarrow{HI/red P}$ 2) H_2SO_4 carboxylic acids

2-Methyl substituted carboxylic acid

(Turn Over)

1

2

3

2

3

P9/374

(c) How would you establish the ring structure of D-glucose?

(6)

(d) Glucose and fructose give same osazone. Explain giving reactions.

UNIT-III

Answer any one question

- 6. (a) Draw the structure of the following (any one) :
 - (i) dADP
 - (ii) ATP
 - (b) Synthesize one important purine present in both DNA and RNA.
 - (c) Identify the base and monosaccharide used to form the following nucleoside and then name it :

- (d) What is stop codon? Give example.
- (e) Write, how the DNA molecule is replicated during cell division.

P9/374

(Continued)

2

2

2

1

4

(7)

7.	(a)	What are coenzymes? Discuss their functions. 1+1=2
	(b)	Write in brief about the Watson and Crick double-helix model of DNA. 3
5	(c)	What do you mean by the terms'transcription' and 'translation'?2
	(d)	How are the following compounds related? 2
		Adenosine and AMP
		UNIT—IV
8.	(a)	Write in brief about the medicinal importance of curcumin. 2
	(b)	Synthesize chloroquine using the following sequential steps : 1+1+1=3
		Step I : AAE to 5-diethyl amino 2-aminopentane
		Step II : m-Chloroaniline + Oxalyl acetic
		ester \rightarrow 4,7-dichloroquinoline Step III : 4,7-dichloroquinoline +
		5-diethyl amino, 2-amino pentane \rightarrow
		Chloroquine
		Give the preparation of the following : $1\frac{1}{2}\times2=3$
		(i) Sulphaguanidine from acetanilide

(ii) Ibuprofen by using green method

P9/374

(Turn Over)

- (c) What are antipyretics? Synthesize a drug which is used to bring down body temperature during fever.
- (d) Write down the laboratory synthesis of chloramphenicol.

UNIT-V

9. (a) Synthesize citral starting from acetylene and acetone.

Or

Complete the following oxidative degradation reactions of α -terpeniol : α -Terpineol $\xrightarrow{1\% \text{ alk.}}_{\text{KMnO_4}}$ A trihydroxy $\xrightarrow{\text{CrO_3}}_{\text{compound } \mathbb{C}_{10}}$ Ketohydroxy acid \longrightarrow Ketolactone $\xrightarrow{\text{warm, alk. KMnO_4}}_{\mathbb{C}_{10}}$ Terpenylic acid $\xrightarrow{\text{KMnO_4}}_{\mathbb{C}_8}$ Terebic acid + CH₃COOH

- (b) What are geraniol and nerol?
- (c) Find out A and B in the following reaction :

P9/374

(Continued)

2

2

3

2

(9)

(Old Course)

Full Marks : 48 Pass Marks : 19

Time : 3 hours

- 1. Select the correct answer/Answer the following : 1×5=5
 - (a) The product obtained during the thermal reaction

(Turn Over)

P9/374

- (b) The pyrimidine bases present in DNA are
 - (i) cytosine and guanine
 - (ii) cytosine and thymine
 - (iii) cytosine and uracil
 - (iv) cytosine and adenine
- (c) Sugars are characterized by the preparation of osazone derivative. Which sugars have identical osazones?
 - (i) Glucose and lactose
 - (ii) Glucose and arabinose
 - (iii) Glucose and fructose
 - (iv) Glucose and maltose
- (d) Draw the structure of chloramphenicol. Give one important use of it.
- (e) What are citral-a and citral-b?

UNIT-I

Answer any one question

2. (a) Draw the π -orbital diagrams for the ground and the excited states of 1,3-butadiene indicating HOMO in each case.

P9/374

(Continued)

1

1

- (b) What are pericyclic reactions? With the help of FMO approach, show that Diels-Alder reaction is a concerted 1+2=3stereospecific reaction.
- Predict the stereochemical products (c) obtained in the following reactions : 1×2=2

2E, 4Z, 6Z octatriene

3. (a) Explain with the help of FMO theory that [1, 5] sigmatropic shift of hydrogen is thermally allowed and occurs in a suprafacial process.

(b) Complete the following reaction and suggest the mechanism :

CH2-CH=CH2 Δ

(Turn Over)

3

2

P9/374

- (c) Write the products with stereochemistry in the following Diels-Alder reaction :
 - (i) \downarrow + Dimethylmaleate \longrightarrow ?

(ii) trans-, trans-2,4-hexadene +

 $\begin{array}{c} O & O \\ \parallel & \parallel \\ CH_3O-C-C=C-C-OCH_3 \longrightarrow \end{array}$

UNIT-II

Answer any one question

- **4.** (a) What are the structures of D-threose and D-erythrose?
 - (b) How would you establish the ring structure of D-glucose?
 - (c) Explain that both α -D-glucopyranose and α -D-allopyranose give the same strontium salt having same specific rotation, by using periodic oxidation.

(d) Complete the following reactions : $1\frac{1}{2} \times 2=3$

(i) D-fructose $\frac{H_2/Ni}{(Open str)}$? $\frac{HNO_3}{[O]}$? $\stackrel{\Delta}{\longrightarrow}$? $\frac{Na-Hg}{PH_{3-5}}$ a pair of epimers (ii) C₆H₁₂O₆ $\frac{3 PhNHNH_2}{D-glucosazone} \frac{CuSO_4}{Glucosotriazole}$

P9/374

1

3

(Continued)

 $1 \times 2 = 2$

(13)

- 5. (a) Convert D-ribose to a pair of epimeric D-aldohexoses by using Fischer-Kiliani synthesis.
 - (b) Determine whether D-fructose is a furanose or a pyranose structure from the following sequential steps :

 $C_{6}H_{12}O_{6} \text{ (fructose)} \xrightarrow[2]{1) MeOH/HCl} \xrightarrow[A]{0} \xrightarrow[Al]{0} \xrightarrow[Al]{$

D-Arabinotrimethyl glutaric acid

(c) What is mutarotation? Why does D-glucose show the phenomenon of mutarotation? 1+2=3

(d) Complete the following reaction : An aldohexose $\xrightarrow{\text{Br}_2/\text{H}_2\text{O}}$ (A) $\xrightarrow{\text{CaCO}_3}$ Cal. salt

$$\xrightarrow{H_2O_2/Fe_2(SO_4)_3}(B)$$

UNIT-III

Answer any one question

6. (a) Synthesize guanine from uric acid. 2

(b) What are complementary bases? Draw the structures to show hydrogen bonding between guanine and cytosine.

1+2=3

(Turn Over)

P9/374

2

4

(14)

- (c) Write a short note on coenzyme.
- (d) Draw the structure of the following nucleotide (any one) :
 - (i) Uridine 5' phosphate (UMP)
 - (ii) Deoxy guanosine 5' phosphate (dGMP)
- 7. (a) Explain the stereospecificity of enzyme with the help of a suitable example.
 - (b) How thymine be synthesized from urea? 2
 - (c) What do you understand by the term genetic code? Discuss briefly the chemical basis of heredity. 1+2=3
 - (d) Write the structures and names of purines and pyrimidines present in DNA.

UNIT-IV

Answer any one question

- 8. (a) Synthesize an antibiotic which is active against certain gram-positive bacteria and gram-negative bacteria.
 - (b) What is tincture of iodine? What is its use?
 - (c) Write the structure of vitamin C. Name the food sources and the deficiency disease caused due to the lack of vitamin C.

P9/374

(Continued)

2

2

2

2

3

- (d) Synthesize paracetamol from p-nitrophenol. 2
- **9.** (a) Draw the structure with the name of an antimalarial which is active against vivax and falciparum malaria.
 - (b) Give the preparation of the following (any one):

(i) Ibuprofen from isobutyl benzene

- (ii) Sulphaguanidine
- (c) How does sulpha drugs prevent the growth and multiplication of bacteria when administered into host body?
- (d) Draw the structure of curcumin and write in brief about its medicinal importance. 1+1=2

UNIT-V

Answer any one question

10. (a) What is isoprene rule? Indicate the isoprene units in the structure of citral.

1+1=2

(b) Complete the following reactions : $1\frac{1}{2}\times2=3$

(i) Geranial $\xrightarrow{\text{alk. KMnO}_4}$ (A) $\xrightarrow{\text{CrO}_3}$ Acetone +

Oxalic acid + Laevulic acid

(Turn Over)

P9/374

(15)

2

(ii) Isoprene + MVK \longrightarrow (A) $\xrightarrow{1)}$ MeMgBr 2) H₂O⁺

(16)

An optically active monterpenoid

(c) How will you establish the position of double bonds (α,β and isolated) in citral? 2

 11. (a) How would you synthesize citral by using the following sequence of reactions?
 2

6-Methylhept-5-en-2-one $\frac{1) I - CH_2 - COOC_2H_5/Zn}{2) H_3O^+} (A)$

$$\xrightarrow{Ac_2O} \text{Geranic ester} \xrightarrow{\text{cal. salt } +} \text{Citral}$$

(b) What happens when-

- (i) citral is treated with aqueous Na₂CO₃;
- (ii) geranicl is oxidized with $Na_2Cr_2O_7/H_2SO_4$? 1+1=2
- (c) Synthesize α-terpineol from p-toluic acid.

* * *

P9-5500/374

5 SEM TDC CHM M 5 (N/O)

Total No. of Printed Pages-11

5 SEM TDC CHM M 7 (N/O)

2018

(November)

CHEMISTRY (Major)

Course : 507

(Symmetry and Quantum Chemistry)

The figures in the margin indicate full marks for the questions

(New Course)

Full Marks : 48 Pass Marks : 14

Time : 2 hours

1. Select the correct answer from the following :

 $1 \times 5 = 5$

- (a) The wave function which is acceptable in quantum mechanics is
 - (i) $\psi = x$ (ii) $\psi = x^2$
 - (iii) $\psi = \sin x$ (iv) $\psi = e^x$

(Turn Over)

P9/375

- (b) The de Broglie wavelength of an electron moving with $\frac{1}{10}$ th of the velocity of light is
 - (i) $2 \cdot 42 \times 10^{-11}$ m
 - (ii) $2 \cdot 42 \times 10^{-11}$ cm
 - (iii) $2 \cdot 42 \times 10^{-10}$ m
 - (iv) None of the above
- (c) Quantum mechanical operator for momentum is
 - $(i) \quad \frac{h}{2\pi i} \nabla \qquad (ii) \quad -\frac{h^2}{8\pi^2 m} \nabla^2$ $(iii) \quad \frac{h}{2\pi i} \qquad (iv) \quad \frac{\hbar}{2i} \nabla$
 - Quantum mechanical operator must be
 - (i) linear

(d)

- (ii) Hermitian
- (iii) Neither (i) nor (ii)
- (iv) Both (i) and (ii)

(e) The point group of $[PtCl_4]^{2-}$ is

(i) D_{4h} (ii) D_{3h} (iii) D_{5h} (iv) C_{4v}

P9/375

(Continued)

- 2. Answer any *five* questions from the following : 2×5=10
 - (a) Taking NH_3 as an example of trigonal pyramid molecule, discuss symmetry operations in $C_{3\nu}$ point group molecules.
 - (b) What are the main differences between VBT and MOT?
 - (c) Show that the function $\psi = \cos ax \cos by \cos cz$ is an eigenfunction of the Laplacian operator. Find the corresponding eigenvalue.
 - (d) Show that the length of a onedimensional box is an integral multiple of λ/2, where λ is the wavelength associated with the particle wave.
 - (e) Calculate the expectation value of p_x (linear momentum along x direction) for a particle in a one-dimensional box of length a.
 - (f) What do you understand by the terms 'eigenfunction' and 'eigenvalue'?

P9/375

(Turn Over)

UNIT-I

- **3.** Answer any *three* questions from the following : 3×3=9
 - (a) Set up the group multiplication table for $C_{2\nu}$ point group.
 - (b) Write down the symmetry elements and point groups of the following : 1×3=3
 - (i) CO_2
 - (ii) BF3
 - (iii) BrF₅
 - (c) State, without any derivation, the five rules about irreducible representation of a group and their characters by making use of 'great orthogonality theorem'.
 - (d) Write down the matrix representation for σ operation taking x, y, z as bases.

UNIT-II

Answer any two questions :

9×2=18

4. (a) (i) The functions given below are defined in the interval x = -a and x = +a as follows :

$$F_1(x) = N_1(a^2 - x^2)$$

$$F_2(x) = N_2 x (a^2 - x^2)$$

P9/375

(Continued)

Assuming the value of the function to be zero for x < -a and x > +a, calculate the values of normalization constants N_1 and N_2 . 3+3=6

- (ii) Show that the functions $F_1(x)$ and $F_2(x)$ in the above problem are orthogonal.
- (b) (i) Solve Schrödinger's wave equation for a particle moving freely in a three-dimensional cubic box. Find the eigenfunction and energy.

4+1+1=6

3

- (ii) Determine the energy required for a transition from $n_x = n_y = n_z = 1$ to $n_x = n_y = 1$, $n_z = 2$ state for an electron in a cubic hole of a crystal with 10^{-8} cm edge-length.
- (c) (i) The distance between the atoms of a diatomic molecule is r and its reduced mass is μ. If its angular momentum is L and moment of inertia is I, then prove that

kinetic energy,
$$T = \frac{L^2}{2\mu I^2}$$

3

3

P9/375

(Turn Over)

- (6)
- (ii) Calculate the probability density for a 1s-electron at the nucleus of H-atom. Given

$$\psi_{1s} = \left(\frac{z^3}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-zr/a_0}$$
$$a_0 = 0.529 \text{ Å}$$

 (iii) Set up Schrödinger's wave equation for a simple harmonic oscillator.
 "The zero-point energy of a simple harmonic oscillator cannot be zero." Explain.

UNIT-III

- 5. (a) Taking suitable trial wave function for hydrogen molecule ion, obtain the expressions for the possible energies and the corresponding eigenfunctions.
 - (b) Explain with a diagram, the formation of bonding and anti-bonding molecular orbitals on the basis of LCAO approximation.

Or

Draw the MO configuration of NO molecule and predict its magnetic character.

P9/375

(Continued)

3

4

2

(7)

(Old Course)

Full Marks : 48 Pass Marks : 19

Time : 3 hours

1. Select the correct answer from the following :

 $1 \times 5 = 5$

- (a) Eigenvalues of a Hermitian operator are
 - (i) real
 - (ii) complex
 - (iii) imaginary
 - (iv) both real and imaginary
- (b) The quantum mechanical operator for kinetic energy is

$$(i) -\frac{h^2}{8\pi^2 m} \nabla^2 \qquad (ii) \frac{h}{2\pi i} \nabla^2$$
$$(iii) \frac{h}{2\pi i} \cdot \frac{d}{dx} \qquad (iv) V$$

(c) The wave function ψ satisfies the equation

$$\int_{-\infty}^{+\infty} \psi^* \psi \, dx = 0$$

The function is said to be

- (i) normalized
- (ii) diagonal
- (iii) orthogonal
- (iv) All of the above

(Turn Over)

P9/375

- (d) The number of nodes in the radial probability distribution curve of s-orbital of any energy level is equal to
 - (i) $\frac{n}{2}$ (ii) n-1

(iii) n-2 (iv) n-l-1

(e) The point group of NH₃ is

(i)	T _d	(ii) D _{2h}
(iii)	C _{2v}	(iv) C _{3v}

- 2. Answer any *five* questions from the following : 2×5=10
 - (a) What do you understand by eigenfunctions and eigenvalues?
 - (b) Differentiate between linear and non-linear operators with examples.
 - (c) What are the main differences between VBT and MOT?
 - (d) Show that e^{-ax^2} (a is a constant) is an eigenfunction of operator $\frac{1}{x} \cdot \frac{d}{dx}$. Find the eigenvalue.

P9/375

(Continued)

- (e) Write a short note on crystallographic point group.
- (f) Determine the degree of degeneracy of the energy levels $\frac{14h^2}{8ma^2}$ of a particle in a three-dimensional box.

UNIT-I

- **3.** Answer any *three* questions from the following : 3×3=9
 - (a) Write the symmetry elements and point groups of the following : 1×3=3
 - (i) H_2O
 - (ii) BCl3

(iii) CO2

- (b) State, without any derivation, the five rules about irreducible representation of a group and their characters by making use of 'great orthogonality theorem'.
- (c) Give the reducible representation of character table for $C_{2\nu}$ point group.
- (d) Write down the matrix representation for σ operation taking x, y, z as bases.

(Turn Over)

P9/375

UNIT-II

Answer any two questions :

- **4.** (a) (i) Deduce Schrödinger's wave equation on the basis of classical wave concept.
 - (ii) What is photoelectric effect? State two significant experimental observations concerning photoelectric effect. Explain the observations with the help of classical theory or any other theory of light. 1+2+2=5
 - (i) Solve Schrödinger's wave equation for a particle in a one-dimensional box and find its energy. Why is the value n = 0 of the quantum number not permitted?
 - (ii) A particle of mass *m* is confined in a one-dimensional box of length *a*. Calculate the probability of finding the particle in the region $0 \le x \le \frac{a}{3}$. What is the limiting probability when $n \to \infty$? 3+1=4
 - (c) (i) Write a short note on radial and angular part of wave function.

(Continued)

3

P9/375

(10)

9×2=18

(ii) Calculate the probability density for a 1s-electron at the nucleus of H-atom. Given

$$\psi_{1s} = \left(\frac{z^3}{\pi a_0^3}\right)^{\frac{1}{2}} e^{-zr/a_0}$$
$$a_0 = 0.529 \text{ Å}$$

3

4

2

2

 (iii) Set up Schrödinger's wave equation for a simple harmonic oscillator.
 "The zero point energy of a simple harmonic oscillator cannot be zero."
 Explain. 2+1=3

UNIT-III

- **5.** (a) Taking suitable trial wave function for hydrogen molecule ion, obtain the expressions for the possible energies and the corresponding eigenfunctions.
 - (b) Draw the MO configuration of NO molecule and predict its magnetic character.

Or

Explain why H_2 molecule is more stable than H_2^+ ion.

* * *

P9-5500/375

5 SEM TDC CHM M 7 (N/O)