Total No. of Printed Pages-7

1 SEM TDC CHMH (CBCS) C 2

2019 (December)

CHEMISTRY

(Core)

Paper : C-2

(Physical Chemistry)

Full Marks : 53 Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following : 1×3=3
 - (a) The critical temperature is that temperature
 - (i) at which a gas behaves ideally
 - (ii) above which a gas can be easily liquefied
 - (iii) below which a gas can be liquefied by pressure alone
 - (iv) at which a gas cannot be liquefied

(Turn Over)

20P/503

- (b) The gases which have the same kinetic energy at a given temperature and pressure are
 - (i) H_2 and N_2
 - (ii) N₂ and CH₄

(iii) CH4 and N2

- (iv) All of the above
- (c) Water is a liquid at room temperature because it
 - (i) has high dipole moment of 1.85 D
 - (ii) is a symmetrical molecule
 - (iii) is extensively H-bonded with other molecules
 - (iv) has large dispersion forces
- 2. Answer any four questions from the following : 2×4=8
 - (a) Xe has $P_c = 58.0$ atm and $T_c = 289.7$ K. Determine its van der Waals' constants a and b.
 - (b) Out of n-pentane and neo-pentane (both are isomers of pentane) which has higher boiling point and why?

20P/503

(Continued)

- (c) Silver crystallizes in a face-centred cubic lattice with all the atoms at the lattice points. The length of the edge of the unit cell as determined by X-ray diffraction studies is found to be 4.077×10^{-8} cm. The density of silver is 10.5 g cm⁻³. Calculate the atomic mass of silver.
- (d) Explain ionic product of water. What is the effect of temperature on it?
- (e) Derive the relation $P_c V_c = \frac{3}{8} R T_c$.
- (f) A buffer solution contains 0.4 mole of NH_4OH and 0.5 mole of NH_4Cl per litre. Calculate the pH of the solution. Dissociation constant of NH_4OH at the room temperature is 1.81×10^{-5} .

UNIT-I

- **3.** Answer any *two* questions from the following : 7×2=14
 - (a) (i) Derive van der Waals' equation for n moles of a real gas.
 4
 - (ii) Show that the excluded volume b is four times the actual volume of the molecule.

20P/503

(Turn Over)

- (b) (i) From the kinetic gas equation, derive the expression for rootmean-square velocity.
 - (ii) Derive the relationship between most probable, average and rootmean-square velocity.
 - (iii) Calculate the temperature at which the average velocity of oxygen equals that of hydrogen at 20 K.
- (c) (i) What are reduced pressure, temperature and volume? Derive the reduced equation of state. Write its significance. 1¹/₂+2¹/₂+1=5
 - (ii) The reduced volume and temperature of a gas are 10.2 and 0.7. What will be its pressure if its critical pressure is 4.25 MPa?

UNIT-II

4. Answer any one question from the following : 5

- (a) (i) Explain three different intermolecular forces present in liquids. Give examples.
 - (ii) What structural part of a liquid makes it flow? Explain briefly how a liquid flows.

20P/503

(Continued)

2

2

3

2

3

- (b) (i) Describe drop number method for determining the surface tension of a liquid.
 - (ii) In the determination of surface tension of a liquid using stalagmometre, the liquid gave 58 drops while water gave 24 drops, the volume of the liquid and water being the same. The density of water is 0.998 g mol⁻¹ while that of the liquid is 0.795 g mol⁻¹. The surface tension of water at the given temperature is 70.8 dynes cm⁻¹. What is the surface tension of the liquid?

UNIT-III

- 5. Answer any two questions form the following : $4\frac{1}{2}\times2=9$
 - (a) What are liquid crystals? Name the different types and how do they differ in their molecular arrangement. Write any one application of liquid crystal.

1+3+1/2=41/2

3

(b) (i) Derive Bragg's equation for crystal structure determination.

(Turn Over)

20P/503

2

- (ii) Sodium metal crystallizes in b.c.c. lattice with the cell edge 4.29 Å. What is the radius of sodium atom? 1¹/₂
- (c) (i) What are Miller indices? Illustrate (111) plane in cubic system.

1+11/2=21/2

2

2

 (ii) Electrical conductivity of semiconductor increases with increase in temperature. Explain from band theory.

UNIT-IV

- **6.** Answer any *two* questions from the following : 7×2=14
 - (a) (i) Define the terms solubility and solubility product of a substance.
 Explain the use of solubility product in qualitative analysis. 2+3=5
 - (ii) 0.00094 gm of AgCl is dissolved in 500 ml of water at 25 °C to form a saturated solution. Calculate the solubility product of AgCl. (Ag = 108, Cl = 35.5).
 - (b) (i) What is buffer solution? Derive Henderson's equation for acidic buffer. Write three applications of buffer solution. $1+2\frac{1}{2}+1\frac{1}{2}=5$

20P/503

(Continued)

(6)

(ii) Calculate the pH value of a solution obtained by mixing 0.083 moles of acetic acid and 0.091 moles of sodium acetate and making the volume 500 ml. K_a for acetic acid is 1.75×10^{-5} .

2

2

(i) What is salt hydrolysis? For a salt of weak base and strong acid, prove that $K_{\rm h} = \frac{K_{\rm w}}{K_{\rm b}}$. Deduce an expression for pH of such salt solution. 1+2+2=5

(ii) Explain why phenolphthalein is not a suitable indicator in the titration of ammonium hydroxide and HCl.

1 SEM TDC CHMH (CBCS) C 2

(c) (i,

20P-2000/503

Total No. of Printed Pages-7

1 SEM TDC CHMH (CBCS) C 1

2019

(December)

CHEMISTRY (Core)

Paper : C-1

(Inorganic Chemistry)

Full Marks : 53 Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following : 1×6=6
 - (a) Heisenberg's uncertainty principle is

(i)
$$\Delta x \cdot \Delta P = \frac{h}{4\pi m}$$

(ii) $\Delta x \cdot \Delta P = \frac{h}{mV}$
(iii) $\Delta x \cdot \Delta P \ge \frac{h}{4\pi}$
(iv) $\Delta x \cdot \Delta P \le \frac{h}{4\pi}$

20P/424

(Turn Over)

- (e) The geometrical shape of ClF₃ molecule is
 - (i) pyramidal
 - (ii) trigonal planar
 - (iii) T-shape
 - (iv) tetrahedral
- (f) Which of the following is paramagnetic?
 - (i) O_2^-
 - (ii) CO
 - (iii) NO⁺
 - (iv) CN-
- **2.** Answer the following questions : 2×9=18
 - (a) What are normalized and orthogonal wave functions? 1+1=2
 - (b) Write Schrödinger's wave equation and give the meanings of the symbols used there. 1+1=2
 - (c) Arrange H_2O , H_2S , H_2Se and H_2Te in the increasing order of bond angle, giving the proper explanation for this trend. 2

(Turn Over)

20P/424

- (d) What do you mean by ionization potential? Why is the value of second ionization potential higher than the first ionization potential?
- (e) Define electron affinity. Electron affinity value increases from nitrogen to fluorine in the periodic table. Explain giving reason.
- (f) Which of the following orbitals are not possible and why?

1p, 2s, 2p and 3f

- (g) Using VSEPR theory, predict the structures of the following : 1×2=2
 - (i) SF4
 - (ii) XeF2
- (h) Using Fazans' rule, explain that "AlF₃ is high-melting solid while AlCl₃ is lowmelting volatile solid".
- (i) Arrange the following in the increasing order of bond length :

$$O_2, O_2^-, O_2^+, O_2^+$$

20P/424

(Continued)

2

2

2

3. Answer any two of the following questions : 4×2=8

- (a) (i) State and explain the principles applied to build up the electronic configuration of nitrogen atom.
 - (ii) Determine the values of n, l, m and s for the valence shell electron of potassium.
- (b) Derive de Broglie equation. Calculate the wavelength associated with a moving electron having kinetic energy 1.375×10^{-25} J. ($h = 6.626 \times 10^{-34}$ J-s) 2+2=4
- (c) (i) Write the radial and angular wave functions for hydrogen atom. 2
 - (ii) Write a note on contour boundary. 2
- 4. Answer any two of the following questions :

3×2=6

2

2

(a) What is effective nuclear charge?
 Explain on the basis of Slater's rule, why 4s orbital is filled earlier than 3d orbital taking potassium atom as an example.

20P/424

(Turn Over)

- (b) What do you mean by electronegativity of an element? Calculate the electronegativity of fluorine using Allred-Rochow equation. (Covalent radius of fluorine = 0.72 Å) 1+2=3
- (c) Nitrogen has positive electron gain enthalpy whereas oxygen has negative. However, oxygen has lower ionization enthalpy than nitrogen. Explain.
- 5. Answer any two of the following questions :

3×2=6

3

- (a) What do you mean by percentage of ionic character? HBr molecule has H—Br bond length 1.41×10⁻¹⁰ m and its dipole moment is 0.79×10⁻²⁹ cm. Calculate the percentage of ionic character of HBr molecule. (Given, electronic charge = 1.602×10⁻¹⁹ C) 1+2=3
- (b) What do you mean by hydrogen bond? What are the different types of hydrogen bond? Explain why o-hydroxybenzaldehyde is a liquid whereas p-hydroxybenzaldehyde is a solid.

20P/424

(Continued)

- (c) What do you mean by bond order of a molecule? The bond dissociation energy of C_2 (599 kJ mol⁻¹) decreases slightly on forming C_2^+ (513 kJ mol⁻¹) and increases greatly on forming C_2^- (818 kJ mol⁻¹). Why? 1+2=3
- 6. Write short notes on any two of the following : 2¹/₂×2=5
 - (a) Solvation energy
 - (b) Defects in solids
 - (c) Mulliken-Jaffe electronegativity scales
- 7. What is standard electrode potential? Explain two important applications of its inorganic reaction. $1+1\frac{1}{2}+1\frac{1}{2}=4$

20P-2000/424

1 SEM TDC CHMH (CBCS) C 1

Total No. of Printed Pages-15

1 SEM TDC CHM M 1 (N/O)

- E.

 $\sqrt{10}$

2019

(November)

CHEMISTRY

(Major)

Course: 101

(Physical, Inorganic and Organic)

The figures in the margin indicate full marks for the questions

Write the answers to the separate Sections in separate books

(New Course)

Full Marks: 80 Pass Marks : 24

Time : 3 hours

SECTION-A

(Physical Chemistry)

(Marks: 26)

1. Choose the correct answer from the following :

....

(a) Bravais lattices are of

(i) 8 types

10 types (ii)

(iii) 14 types

16 types (iv)

[P.T.O.

 $1 \times 3 = 3$

20P/219

- (b) Compressibility factor of an ideal gas is
 - *(i)* 0

- *(ii)* 1
- (iii) infinity
- (iv) 0·9

(c) The shape of a drop of liquid is spherical due to

- (i) viscosity
- (ii) absorption
- (iii) conductivity
- (iv) surface tension

2. Answer any three questions from the following :

2×3=6

- (a) Write two differences between smectic and nematic liquid crystals.
- (b) What are crystalline and amorphous solids? Give one example of each.
- (c) Describe any two factors upon which the surface tension of a liquid depends.
- (d) Write the physical significances of van der Waals' constants a and b.
- (e) Prove that $P_c V_c = \frac{3}{8} RT_c$.

Unit—I

3. Answer any *two* questions from the following : $3\frac{3}{2}\times2=7$

(a) Write kinetic gas equation. From this equation, derive Boyle's law.

1+21/2=31/2

- (b) Derive reduced equation of states. Write its significance.
 - 21/2+1=31/2

2

11/2

- (c) (i) Give the relationship among most probable, average and root mean square velocities.
 - (ii) Calculate Boyle's temperature for carbon dioxide gas assuming it to be a real gas. $(a = 3.59 \ 1^2 \text{atm} \ \text{mol}^{-2}, \ b = 0.0427 \ 1 \ \text{mol}^{-1})$

20P/219

• • •

1 · ·

4.	Answer any one question from the following :			3
	(a)		cribe the method for determining the viscosity of a liquid in the pratory.	3
	(b)	upo	at do you mean by vapour pressure of a liquid? Write any two factors n which the vapour pressure of a liquid depends. Mention the SI unit	
		of s	urface tension. 1+1+1:	=3
Unit—III				
5.	Ans	wer	any two questions from the following : $3\frac{1}{2}\times2^{=}$	=7
	(a)	Wha unit	at is unit cell? Calculate the number of atoms present in face-centered lattice and body-centered unit lattice. $\frac{1}{2}+(1\frac{1}{2}\times 2)=3$	1/2
	(b)	(i)	Derive Bragg's equation.	1⁄2
		(ü)	Write the names of two methods by which the structure of a solid can be determined.	1
	(c)	(i)	At room temperature, sodium crystallizes in a body-centered cubic cell with edge length 4.24 Å. Calculate the density of sodium. (Atomic	
			mass of sodium = 23 a.m.u.) 2	⅓
		(ü)	What is F-centre?	1

SECTION-B

(Inorganic Chemistry)

(Marks: 27)

- 6. Choose the correct answer from the following : 1×3=3
 - (a) The correct decreasing order of first ionization energy of five elements of second period is
 - (i) Be > B > C > N > F
 - (ii) N > F > C > B > Be
 - (iii) F > N > C > Be > B
 - (iv) N > F > B > C > Be

20P/219

- (b) The molecular geometry of SF_4 is
 - (i) T-shaped
 - (ii) seesaw
 - (iii) tetrahedral

, (*.*,

- (iv) square planar
- (c) The bond order of C_2 molecule is
 - (*i*) 1 (*ii*) 2 (*iii*) 0 (*iv*) 3

7. Answer the following questions :

- (a) The first ionization energy of C atom is greater than that of B, whereas the reverse is true for the second ionization energy. Explain.
- (b) Discuss the favourable factors for the formation of ionic bond.
- (c) NH_3 molecule is pyramidal but NH_4^+ is tetrahedral though molecules involves sp^3 hybridization. Explain.

8. Answer any two questions from the following :

- (a) Define effective nuclear charge. Calculate the effective nuclear charge at the periphery of a Cu atom. 1+2=3
- (b) Define electronegativity of an element. Calculate the electronegativity of N atom using Allred-Rochow equation. (Covalent radius of N = 0.74 Å)
 - 1+2=3

3

3×2=6

2×3=6

(c) Define electron affinity. The first electron affinity of oxygen is 141 kJ mol^{-1} while that the second electron affinity is -770 kJ mol^{-1} . Account for this.

9. Answer any three questions from the following :

- (a) What are the necessary conditions for the combination of atomic orbitals?
 Draw the molecular orbital energy level diagram for CO molecule and determine its bond order and magnetic behaviour.
- (b) Define bond length and bond energy. What are the effects on bond order in the following ionization processes?
 - (i) $C_2 \longrightarrow C_2^+ + e^-$ (ii) $O_2 \longrightarrow O_2^+ + e^-$ 2+2=4

- (c) (i) Define lattice energy. Write the Born-Landé equation for the lattice energy of ionic crystal and indicate the each term of the equation. 2
 - (ii) Calculate the enthalpy of formation of MgF₂ from the following data : 2 Sublimation enthalpy of Mg = 146.4 kJ mol⁻¹ Dissociation enthalpy of F = 158.8 kJ mol⁻¹ Ionization enthalpy of Mg = 2186.0 kJ mol⁻¹ Electron gain enthalpy of F = - 332.6 kJ mol⁻¹ Lattice energy of MgF₂ = - 2922.5 kJ mol⁻¹
- (d) (i) Bond angles of NH_3 , PH_3 and AsH_3 are 107.5° , 93.2° and 91.5° respectively. How would you account for this?
 - (ii) Write a note on partial ionic character in covalent bond.

SECTION---C

. .

(Organic Chemistry)

(Marks: 27)

10. Choose the correct answer from the following :

(a) In which of the following molecules resonance effect is not present?

(b) Which of the following compounds has the highest acidic strength?

- (i) *m*-nitrophenol
- (ii) Phenol
- (iii) o-nitrophenol
- (iv) p-nitrophenol

20P/219

[P.T.O.

 $1 \times 3 = 3$

2

(c) The IUPAC name of the compound

(iv) None of the above

11. Answer any three questions from the following :

(a) Arrange the following compounds in order of increasing acidity with reasoning :

2×3=6

 $CH_3 - CH_2 - NH_3$, $CH_3 - CH = NH_2$, $CH_3 - C = NH_3$

- (b) The pK_a value of phenol is 10 and that of cyclohexanol is 16. Explain this observation.
- (c) Dipole moment of $CHCl_3$ is less than that of CH_2Cl_2 . Explain.
- (d) Draw the Fischer projection of mesotartaric acid and convert it into Newman projection.
- (e) Write down the E and Z nomenclature of the following compounds (any two):

CH₃ OH | | *(ii)* CH₃—CH₂—C=C—CH₃

(iii) CH_3 — CH_2 —C(Br)=C(CI)—COOH

Unit-I

12. Answer any three questions from the following :

(a) Draw the energy profile diagram of a three-step exothermic reaction in which the first step is the rate determining step.

- (b) What do you understand by the term 'resonance'? Write two conditions necessary for resonance.
- (c) What are nitrenes? What happens when an alkylnitrene reacts with a carbon-carbon double bond?
- (d) Discuss the structure of a carbocation or a carbanion.
- (e) Explain why π -insertion of singlet carbene gives stereospecific addition product.

UNIT-II

13. Answer any six questions from the following :

- (a) Staggered conformation of *n*-butane is more stable than in eclipsed conformation. Explain with the help of their structures.
- (b) Sketch the Newman projection of meso-2-3-butanediol.
- (c) Assign R and S designation to the following compounds (any two) :
 - (i) HO₂C^W Br
 - (ii) D-glyceraldehyde

7

2×3=6

 $2 \times 6 = 12$

- (d) What is Walden inversion? Give one example.
- (e) Draw the Fischer's projection formula of the following :
 - (i) (R)-3-methylpentan-1-ol

Ċ

- (ii) (S)-2,3-dimethyl hexane and the second second
- (f) Draw the three stereoisomers of tartaric acid in Fischer's projection formula. Which of them are enantiomers and which one is the meso form?
- (g) Sketch the flying wedge and sawhorse projections of trans-2-butene.
- (h) What do you mean by the term 'racemization'? Active mandelic acid undergoes racemization when treated with NaOH. Give an explanation.

***** -