3 SEM TDC CHMH (CBCS) C 7

2020

(Held in April-May, 2021)

CHEMISTRY

(Core)
Paper: C-7

(Physical Chemistry)

$\frac{\text { Full Marks : } 53}{\text { Pass Marks : } 21}$
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. Select the correct answer from the following :

$$
1 \times 5=5
$$

(a) For a reaction $\frac{1}{2} A \rightarrow 2 B$, rate of disappearance of A is related to the rate of appearance of B by the expression
(i) $-\frac{d[A]}{d t}=\frac{1}{2} \frac{d[B]}{d t}$
(ii) $-\frac{d[A]}{d t}=\frac{1}{4} \frac{d[B]}{d t}$
(iii) $-\frac{d[A]}{d t}=\frac{d[B]}{d t}$
(iv) $-\frac{d[A]}{d t}=4 \frac{d[B]}{d t}$
(b) The unit of rate constant of a reaction is $\mathrm{mol} 1^{-1} \mathrm{~s}^{-1}$. The order of the reaction is
(i) 0
(ii) 1
(iii) 2
(iv) 0.5
(c) The number of components, phases and degrees of freedom in silver and lead system at the eutectic point is
(i) $2,2,1$
(ii) 1, 2, 2
(iii) 2, 1, 2
(iv) $2,3,0$
(d) The adsorption theory explains
(i) homogeneous catalysis
(ii) acid-base catalysis
(iii) heterogeneous catalysis
(iv) enzyme catalysis
(e) During adsorption, the entropy of the system
(i) increases
(ii) decreases
(iii) remains same
(iv) first decreases and then increases
2. Answer the following questions : $2 \times 5=10$
(a) Discuss the efficiency of metal nanoparticles as catalyst.
(b) Explain why the fusion curve of ice has a negative slope whereas the sublimation curve has a positive slope in the phase diagram of water.
(c) Explain the terms 'components' and 'degrees of freedom'.
(d) Prove that the half-life period of a first-order reaction is independent of the initial concentration of the reactant.
(e) Show that for a first-order reaction, time required for 99% completion is twice that for the time required for 90% completion of the reaction.

UNIT—I

3. Answer any two questions from the following : $71 / 2 \times 2=15$
(a) (i) Write down the number of components, number of phases and degrees of freedom for the following equilibria :

$$
\begin{aligned}
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+ & \mathrm{HCl}(\mathrm{~g}), \\
& P_{\mathrm{NH}_{3}} \neq P_{\mathrm{HCl}}
\end{aligned}
$$

(ii) Distinguish between the triple point and the freezing point of a pure substance.
(iii) Draw and explain the phase diagram of a one-component system which contains more than one solid phase.
(b) (i) Draw the phase diagram of a simple eutectic system and label each zone and line. Describe the effect of cooling of liquid mixture of different compositions.
(ii) Explain congruent and incongruent melting points.
(c) (i) What are azeotropes? Can we separate an azeotropic mixture by fractional distillation? Why is it not considered as a compound?

$$
1^{1 / 2}+1+1=3^{1 / 2} 2
$$

(ii) What is critical solution temperature? Describe different types of partially miscible liquids.

$$
1+3=4
$$

UNIT-II
4. Answer any two questions from the following : $5 \times 2=10$
(a) Discuss the collision theory of reaction rates. Write down its limitations. $4+1=5$
(b) For the thermal decomposition of O_{3}, the following mechanism has been suggested :

$$
\begin{array}{r}
\mathrm{O}_{3} \stackrel{k_{1}}{\rightleftarrows} \mathrm{O}_{2}+\mathrm{O} \\
\mathrm{O}_{3}+\mathrm{O} \xrightarrow{k_{2}} 2 \mathrm{O}_{2}
\end{array}
$$

Assuming that $k_{-1}\left[\mathrm{O}_{2}\right] \gg k_{2}\left[\mathrm{O}_{3}\right]$, derive a rate expression for the reaction. How will you show that oxygen retards the rate of the reaction?
(c) (i) Derive the integrated rate expression for the second-order reaction of the type $2 A \rightarrow$ products. $21 / 2$
(ii) Deduce the expression for half-life period of such a reaction. $11 / 2$
(iii) Give an example of such type of reaction.

UNIT-III

5. Answer any two questions from the following : $\quad 312 \times 2=7$
(a) Deduce Michaelis-Menten equation for enzyme catalytic reaction. Define Michaelis constant. $21 / 2+1=31 / 2$
(b) What are homogeneous and heterogeneous catalyses? Give one example of each type of these catalyses. What are catalytic promoters?

$$
11 / 2+1^{1 / 2}+1 / 2=3^{1 / 2}
$$

(c) (i) What is autocatalysis? Give one example. $\quad 1 / 2+1=1^{1 / 2}$
(ii) Briefly discuss acid-base catalysis. 2

Unit—IV
6. (a) What are adsorption isotherms? Deduce Freundlich adsorption isotherm and present it graphically. $1+2+1=4$

(7)

(b) Write the differences between chemisorption and physisorption. 2

Or
Write the postulates of Langmuir adsorption isotherm.

