Total number of pages - 16

2023

MATHEMATICS

Full Marks : 100
Pass Marks : 30

Time : Three hours
The figures in the margin indicate full marks for the questions.
Q. No. 1 (i-x) carries 1 mark each
Q. Nos. 2-13 carry 4 marks each
Q. Nos. 14-20 carry 6 marks each

$$
1 \times 10=10
$$

$$
4 \times 12=48
$$

$$
6 \times 7=42
$$

Total $=100$

1. Answer the following questions :

তলব প্রশ্নবোবব উত্তব দিয়া :
(i) State trie or false : শুদ্ধ নে অশুদ্ধ লিখা:

On any finite set X, an one-one function $f: X \rightarrow X$ iṣ necessarily onto.
যিকোনো সসীম সংহতি X ব বাবে এটা একৈকী ফলনন $f: X \rightarrow X$ সদায় আচ্ছ্রদক।
(ii) If (যদি) $\cos ^{-1} x=y$, then the value of y is (जেন্তে y ব মান হ’ল̣)
(a) $0 \leq y \leq \pi$
(b) $0<y<\pi$
(c) $\frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$
(d) $\frac{-\pi}{2}<y<\pi / 2$
(iii) Fill in the blanks :

খালী ঠাই পূब কबা :
The number of all possible matrices of order 2×2 with each entry 0 or 1 is \qquad
মৌলবোব 0 বা 1 লৈ গঠন কবিব পবা 2×2 ঘাতब সম্তরপব মৌলকক্ষब সংখ্যা হ'ল
\qquad 1
(iv) What do you mean by critical point of a function? এটা ফলনब ক্রান্তিক বিন্দু বুলিলে কি বুজা?
(v) Give an example of a function which is continuous on \mathbb{R} but not differentiable therein.
এটা ফলনব উদাহবণ দিয়া যিটো \mathbb{R} ত অবিচ্ছিন্ন হয়, কিন্তু তাতে অররকলনীয় নহয়।
(vi) If $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$ such that $f(1)=0$; then find $f(x)$.

यদি $\frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}}$ যাতে $f(1)=0$ হয়, তেন্তে $f(x)$ উল্লিওরা।
(vii) Write the order and degree (if exist) of the differential equation
$\frac{d^{2} y}{d x^{2}}=\sqrt{\cos \frac{d y}{d x}}$.
$\frac{d^{2} y}{d x^{2}}=\sqrt{\cos \frac{d y}{d x}}$ অরকল সমীকবণটোব ক্রম আবু মাত্রা (যদি আছে) লিখা।
(viii) If \vec{a} is a non-zero vector of magnitude ' a ' and λ is a nonzero scalar, then $2 \lambda \vec{a}$ is unit vector if यमि \vec{a} এটি অশূন্য ভেক্টক আবু এবं মান ' a ' আবু λ এটি অশুন্য স্কেলাব। তেন্তে এটি $2 \lambda \vec{a}$ এটা একক ভেক্টব হয়, यদি
(i) $\lambda=1$
(ii) $\lambda=-1$
(iii) $a=|\lambda|$
(iv) $a=\frac{1}{2|\lambda|}$
(ix) Find the Cartesian equation of the plane

$$
\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2
$$

where \vec{r} be the position vector of any arbitrary point.
$\vec{r} .(\hat{i}+\hat{j}-\hat{k})=2$ সমতলখনব কার্টেজীয় সমীকबণ উলিওরা য'ত \bar{r} रुছে যিকোনো এটা যাদৃচ্ছিক বিন্দুম স্থিতি ভেক্টব।
(x) Define Bernoulli trials. বার্ণুলি প্রচেষ্টাব সংজ্ঞা দিয়া।
2. Show that $f:[-1,1] \rightarrow \mathbb{R}$ given by $f(x)=\frac{x}{x+3}$ is one-one. Find the inverse of the function $f:[-1,1] \rightarrow$ Range f.
$f:[-1,1] \rightarrow \mathbb{R}$ ফলননটোब সংজ্ঞা এনেদবে দিয়া আছে $f(x)=\frac{x}{x+3}$ । দেখুওওা যে. ফলানটো একৈকী। $f:[-1 ; 1] \rightarrow$ Range $f(f$ ব পबিসব) ফল্ননটোব প্রতিলোম উলিওরা।

OR/ অथবা

Let L be the set of all lines in $x y$-plane and R be the relation in L defined as $R=\left\{\left(l_{1}, l_{2}\right) / l_{1}\right.$ is parallel to $\left.l_{2}\right\}$. Show that R is an equivalence relation. Find the set of all lines related to the line $y=3 x+1$.

ধবাহ'ল $x y$-সমতলত থকা সকলো বেখাব সংহত্টো L । দেখুওরা য়ে L ত সংজ্ঞাবদ্ধ সম্বন্ধ $R=\left\{\left(l_{1}, l_{2}\right) / l_{1}, l_{2}\right.$ ब সমান্তबাল $\}$ এটা সমতুল্যতা সম্বন্ধ। $y=3 x+1$ बেখাব লগত যুক্ত. সকলোবোব বেখাব সংহতিটো উলিওরা।
3. Prove that $2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}$ for $x \in[-1,1]$. Also find the value of $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$.

$$
2+2=4
$$

প্রমাণ কবা যে $x \in[-1,1]$ ब বাবে $2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}$ । লগতে $\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)$ ব মান নির্ণয় ক্বা।

OR/ অথবা

Show that (দেখুও্রা যে)

$$
\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{63}{16}\right)=\pi
$$

4. Using properties of determinants, show that

নির্ণায়কब ধর্ম প্রয়োগ কবি দেখুুরা যে

$$
\left|\begin{array}{rrr}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

OR / অथবা

For any square matrix A with real entries, prove that $A+A^{\prime}$ is symmetric and $A-A^{\prime}$ is skew symmetric matrix (where A^{\prime} is the transpose of A).
প্রমাণ কबা যে বাস্তর মৌলৈবিশিষ্ট এটা বর্গ মৌলকক্ষ A ब ক্কেত্রতত $A+A^{\prime}$ স়মমিত আকু $A-A^{\prime}$ বিষম সমমিত (য’ত A^{\prime} रूছে A ब পক্ষান্তবিত মৌলকক্ষ)।
5. Find $\frac{d y}{d x}$ if
$\frac{d y}{d x}$ উলিও্রা যদিহে.
(i) $\log (\log x), \quad x>1$
(ii) $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), \quad 0<x<1$

OR / অথবা

If $y^{x}=x^{y}$, find $\frac{d y}{d x}$
यদি $y^{x}=x^{y}$ इয়, $\frac{d y}{d x}$ উলিওরা।
6. Evaluate : (any two)

মান নি⿵্ণয় কबা : (যিকোনো দুটা)
(i) $\int \frac{d x}{x+x \log x}$
(ii) $\int \frac{1-\cos 2 x}{1+\cos 2 x} d x$

- (iii) $\int e^{x} \sin x d x$

7. Integrate : (any one)

অনুকল উলিওরা : (যিকোন্ো এটা)
(i) $\int \frac{2 x}{x^{2}+3 x+2}$
(ii) $\int_{0}^{2 / 3} \frac{d x}{4+9 x^{2}}$
8. For the differential equation $x y \frac{d y}{d x}=(x+2)(y+2)$, find the solution curve passing through the point $(1,-1)$.
$x y \frac{d y}{d x}=(x+2)(y+2)$ অরকল সমীকবণब বাবে $(1 ;-1)$ বিন্দুবে অতিক্রম কবা সমাধান বক্রডাল নির্ণয় কবা।

OR/অথথা

Find a particular solution of the differential equation

$$
\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x(x \neq 0)
$$

where $y(\pi / 2)=0$.
$\frac{d y}{d x}+y \cot x=4 x \operatorname{cosec} x(x \neq 0)$ অরকল সমীকबণটোব বিশেষ সমাধান উলিওরা यंত $y(\pi / 2)=0$.
9. Answer (i) and (ii) OR (a) and (b) : উত্ত্ব কबা (i) আর্চু (ii) অথবা (a) আক্ (b) :
(i) If (यमि) $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$,
show that (দেখ্যুও্ৰা যেে) $F(x) F(y)=F(x+y)$.
(ii) Prove that (প্রমাণ কबা: যে.)

$$
\begin{gathered}
\int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x \\
O R / \text { অथবा }
\end{gathered}
$$

(a) If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$, then find x.

यদिহে $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$ इয়, তেন্ডে x ब মান উলিওরা।
(b) If $x=a(\cos t+t \sin t), \quad y=a(\sin t-t \cos t)$
find $\frac{d y}{d x}$.
यদি $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$ इয়, $\frac{d y}{d x}$ উनिওরা।
10. Show that the points A, B and C with position vectors. $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \quad \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ respectively form the vertices of a right angled triangle.
$1 \times 4=4$
A, B আকু C বিन্দুब অরস্থান ভেক্টব ক্রমে $\vec{a}=3 \hat{i}-4 \hat{j}-4 \hat{k}, \quad \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ आ<ু $\vec{c}=\hat{i}-3 \hat{j}-5 \hat{k}$ । দেখুওরা যে বিন্দু তিনিট়ইই এটা সমকোণী ত্রিভুজ গঠন কবে।
11.
(i). Find a unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$.
$\vec{a}+\vec{b}$ আবু $\vec{a}-\vec{b}$ ভেক্টব দুটাব প্রত্যেকবে লগত লম্ব হোরা এটা একক ভেক্টব উলিওরা য'ত $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ আবু $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ ।
(ii) Evaluate the product পূবণফলটো উলিওরা

$$
(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})
$$

OR / অथবা

Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B divides $A C$.
দেখুjওরা যে $A(1,-2,-8), B(5,0,-2)$ আঝ $C(11,3,7)$ বিন্দুকেইইটা একেকেখীয় आকু B বিন্দুরে $A C$ ক কি অনুপাতত ভাগ কবে উলিওরা।
12. A bag consists of 10 balls each marked with one of the digits from 0 to 9 . If 4 balls are drawn successively with replacement from the bag, what is the probability that one ball is marked. with the digit 1.
এটা মোনাত 0 ब পবা 9 লৈ সংখ্যাকেইটাবে চিহ্তিত 10 টা বল আছে। এটাব পিছত এটাকৈ মোনাখনব পबা মুঠ 4টা বল পুন্স্থাপন ক্বাকৈ উলিওরা হ'ল। এंটা বল 1 बে চিহ্নিত হোরাব
সस्ভরিরা কিমান? সম্ভারিতা কিমান?
13. Find all points of discontinuity of f where f is defined by

$$
f(x)=\left\{\begin{array}{lll}
|x|+4, & \text { if } & x \leq-4 \tag{4}\\
-2 x, & \text { if } & -4<x<4 \\
6 x+2 & \text { if } & x \geq 4
\end{array}\right.
$$

f ब বিচ্ছিন্নতাব সকলো বিন্দু উলিওরা য’ত f ফলননটো এনেদরে সংজ্ঞাবদ্ধ আছে

$$
f(x)= \begin{cases}|x|+4, & \text { यमि } \quad x \leq-4 \\ -2 x, & \text { यंদि }-.4<x<4 \\ 6 x+2 & \text { यमि } x \geq 4\end{cases}
$$

14. Using elementary operation, find the inverse of the matrix. A where $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$.

মোলিক প্রক্রিয়া প্রয়োগ ককি A ब প্রতিলোম মৌলকক্ষ উলিওরা যত $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right]$.

OR / অथবা

Solve the following system of linear equations using matrix 6 method :
মৌলকক্ষীয় পদ্ধতিব তলব সমীকবণণ প্রণালীব সমাধান নির্ণয় কবা:

$$
\begin{aligned}
2 x+3 y+3 z & =5 \\
x-2 y+z & =-4 \\
3 x-y-2 z & =3
\end{aligned}
$$

15.

(i) The radius of a circle is increasing at the rate $0: 5 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of its circumference?
এটা বৃত্ব ব্যাসার্ধ ছেকেতুত 0.5 cm হাবে বাত়ে। ইয়াব পৃিধিব বৃদ্ধিব হাব কিমান?
(ii) Find the interval in which the function y is strictly increasing. and decreasing where $y=x^{2} e^{-x}$.
$y=x^{2} e^{-x}$ ফ़লनটো কোন অন্তबালত় সতত y বর্ধমান আ<ু হ্রাসমান নির্ণয় কब্ব।।

OR / অথবা

$$
3+3=6
$$

(a) Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the X-axis.
$x^{2}+y^{2}-2 x-3=0$ বক্রু যি বিন্দুত স্পর্শক X-অক্ষব সমান্তबাল, সেই বিন্দू উলিওরা।
(b) Find all the points of local maxima and local minima of the function f given by

$$
f(x)=2 x^{3}-6 x^{2}+6 x+5 \text { (if exist) }
$$

$f(x)=2 x^{3}-6 x^{2}+6 x+5$ ब দ্বাবা নির্দিষ f ফল্ননब স্থানীয় গবিষ্ঠ মান আক্ স্থানীয় লঘিষ্ঠ মানब সকন্গো বিন্দু উनিওরা (যদিহে আছে)।
16.
(a) Evaluate :

মান নির্ণয় কবা:

$$
\int_{-5}^{5}|x+2| d x
$$

(b) Prove that প্রমাণ কबা যে

$$
\int_{0}^{\pi / 2} \sin ^{3} x d x=\frac{2}{3}
$$

OR/অথবা

Find the area of the region bounded by the curves $y=x^{2}+2$, $y=x, x=0$ and $x=3$.
$y=x^{2}+2$ বক্র $y=x, x=0$ আবু $x=3$ বেখাই আগুবা ক্ষেত্রব কালি নির্ণয় কবা।
(a) Form a differential equation representing the given family of curves. $y=e^{x}(a \cos x+b \sin x)$ by eliminating arbitrary constants a and b.
প্রদত্ত বক্র প্রবিয়াল $y=e^{x}(a \cos x+b \sin x)$ ব যাদৃচ্ছিক ধ্রুরক a আক্ b অপনয়ন কবি অরকল সমীকবণটো গঠন কবা।
(b) Find the general solution of the differential equation

$$
x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x
$$

$x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$ অबকল সমীকবণটোব সাধাবণ সমাধান উनिওরা।

OR/ অথবা

Show that the differential equation $2 y e^{x / y} d x+\left(y-2 x e^{x / y}\right) d y=0$ is homogeneous and find its particular solution when $y(0)=1$.

দেখুওরা যে $2 y e^{x / y} d x+\left(y-2 x e^{x / y}\right) d y=0$ ब অরকলল সমীকনণটো সমমাত্রিক আরু ইয়াব বিশেষ সমাধান উলিওরা যেতিয়া $y(0)=1$.
18. Find the vector equation of the plane passing through the intersection of the planes

$$
\begin{aligned}
& \vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7 \\
& \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9
\end{aligned}
$$

and through the point $(2,1,3)$.
$(2,1,3)$ বিন্দুब মাজেবে যোরাকৈ আব্ $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7$,
$\vec{r} .(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ সমতল দুখনে কটটাকটি কबা বেখাব মাজেবে যোরা সমতলব ভেক্টব সমীকবণ উলির্তরা।

OR/ অথবা

$$
4+2=6
$$

(i) Find the vector and Cartesian equations of the line that passes through the points $(3,-2,-5)$ and $(3,-2,6)$.
$(3,-2,-5)$ আকু $(3,-2,6)$ বিन्দू সংযোগী বেখাডালব ভেক্টব আক্ কার্টেজীয় সমীকবণ উলিওরা।
(ii) Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

দেখুওরা যে $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ आক্ $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ বেখা দুডাল পবস্পব লম্ব হয়।
19. Solve graphically the following linear programming problem. नৈখিক নিয়মেবে তলব বৈখিক প্রগ্রেমিং সমস্যাটোব সমাধান কबা ঃ

Maximize and minimize

$$
Z=-x+2 y
$$

subject to the constraints

$$
\begin{aligned}
x & \geq 2 \\
x+y & \geq 5 \\
x+2 y & \geq 6 \\
y & \geq 0
\end{aligned}
$$

$Z=-x+2 y$ ब সর্বোচ্চ আবু সর্বনিম্ন মান উলিওওরা য’ত

$$
\begin{aligned}
x & \geq 2 \\
x+y & \geq 5 \\
x+2 y & \geq 6 \\
y & \geq 0
\end{aligned}
$$

OR/অथবা

A manufacturer makes two types of toys A and B. Three machines are needed for this purpose and the time (in minutes) required for each toy of the machines is given below :

Types of Toys	Machines		
	I	II	III
A	12	18	6
B	6	0	9

Each machine is available for a maximum of 6 hours per day. If the profit on each toy of type A is Rs. 7.50 and that on each toy of type B is Rs. 5 , show that 15 toys of type A and 30 toys of type B should be manufactured in a day to get maximum profit.

এজন প্রস্তুতকর্তাই A आ<ু B দুই বিধব পুতল্া তৈয়াব কবে। ইয়াব বাবে তিনি ধবনব মেচিনব আরশ্যক হয়। আবু মেচিনবোবত প্রত়তটো পুতলাব বাবে প্রয়োজনীয় সময় (মিনিটব হিচাপত) নিম্নোক্ত ধবনব -

পুত্লাব প্রকাব	মেচিন		
	I	II	III
A	12	18	6
B	6	0	9

দৈনিক সর্বোচ্চ 6 ঘণ্টাব বাবেহে প্রতিটো মেচিন উপল্ক হয়। যদি A বিধব প্রতিটো পুতলাত 7.50 টকা আক্ক B বিধষ প্রততটোপ পুতলাত 5 টকাকৈ লাভ হয়, দেখুওরা যে সর্বোচ্চ লাভ অর্জন কबিবলৈ দৈनिক A বিধব 15 টা আবু B বিধব 30 টौকৈ পুতলা তৈয়াব কবিব লাগ়িব।
20. A doctor is to visit a patient. From the past experience, it is known that the probabilities that he will come by train, bus, scooter or by other means of transport are respectively $\frac{3}{10}, \frac{1}{5}, \frac{1}{10}$ and $\frac{2}{5}$. The probabilities that he will be late are $\frac{1}{4}, \frac{1}{3}$ and $\frac{1}{12}$ if he comes by train, bus and scooter respectively, but if he comes by other means of transport, then he will not be late. When he arrives, he is late. What is the probability that he comes by bus?

এজন চিকিৎসকে এজন বোগীক পবীক্ষা কবিবলৈ যাব লাগে। পুর্বব অভিজ্ঞতাব পবা এইটো জনা যায় সে তেঙ়ঁ ট্রেইন, বাছ, স্কুটাৰ বা অন্য ব্যরস্থাবে যোরাব সম্ভার্বিতাবোব ক্রমে $\frac{3}{10}, \frac{1}{5}, \frac{1}{10}$. আবু $\frac{2}{5}$ । ট্রেইন, বাছ বা স্কুটাবেবে গলৈ তেওঁব পলম হোরাব সম্ভারিতাবোব ক্রমে $\frac{1}{4}, \frac{1}{3}$ আক্ $\frac{1}{12}$ । কিন্তু তেঁও यদি অন্য ব্যরস্থাবে যায়, তেন্তে তেওঁঁ পলম নহয়। তেওঁ গু পোরাত পলম হ’ল। তেওঁ বাছেবে যোরাব সম্ভারিতা কিমান?

OR / অथবা

In a girls' hostel, 70% of the students read Hindi newspaper, 30\% read English newspaper and. 20\% read both Hindi and English newspapers. A student is selected at random.
(a) Find the probability that she reads neither Hindi nor English newspapers.
(b) If she reads Hindi newspaper, find the probability that she reads English newspaper.

এটা ছাত্রী নিবাসত ছত্রীসंকলব 70% য়ে হিন্দী, 30% য়ে ইংবাজী আবু 20% য়ে হিন্দী আবু そংবাজী উভয়বিধ বাতবি কাকত পঢ়ে। যাদৃচ্ছিকভারে এজনী ছত্রী বাছনি কबা इंल -
(a) সম্ভারিতা উলিওওরা যাতে ছাত্রীগবাকীয়ে হিন্দী বা ইংবাজী কোনেোবিধ বাতবি কাকতকে নপঢ়ে!
(b) যদি তেওঁ হিন্দী বাতবি কাক়ত পঢ়ে, তেন্তে ইংষ্যাজী বাতবি পঢ়াব সম্ভার্তিতা নির্ণয় কबा।
(ii) Define independent events with an example. এটা উদাাহবণব সৈতে স্বতন্ত্র ঘটনাব সংজ্ঞা লিখা।

