1 SEM TDC PHIH (CBCS) C 2

2022
 (Nov/Dec)

 PHILOSOPHY

 PHILOSOPHY
 (Core)

Paper : C-2
(Logic)

Full Marks : 80
Pass Marks: 32
Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. Find out the correct answer :
$1 \times 8=8$
(a) Validity of an argument is concerned with the content of the argument / form of the argument.
(b) When subject and predicate are same, the relation between A and O proposition is known as contrary / contradictory opposition.
(c) 'DISAMIS' is a valid mood of the Third / Fourth figure.
(d) The subject of the conclusion of a syllogism is called major term / minor term.
(e) When the truth-value of p is true and q is false, the truth-value of $p \vee q$ is true / false.
(f) The set which has no member is called finite set / null set.
(g) 'Commutation' is a kind of rule of inference / rule of replacement.
(h) The symbolic expression of the phrase 'given any X^{\prime} is $(X) /(\exists x)$.
2. Write short notes on any five of the following :

$$
4 \times 5=20
$$

(a) Square of opposition
(b) Variable and logical constant
(c) Subset
(d) Structure of categorical syllogism
(e) Propositional function
(f) Universal quantifier
3. Define argument. Explain the relation between argument and argument form. $3+10=13$

13)

Or

What do you mean by validity of argument? Explain the relation between truth and validity with appropriate examples. $3+10=13$
4. What is figure of syllogism? Explain the different kinds of figure of syllogism with proper symbolic form. $\quad 3+10=13$

Or

Symbolize O proposition with the help of Venn diagram. Test the validity of the following syllogistic form by means of Venn diagram :

$$
1+3 \times 4=13
$$

(a) AII in the First figure
(b) EIO in the Second figure
(c) $A E E$ in the Third figure
(d) $A O O$ in the Fourth figure
5. Name the basic truth functions. Construct truth-table for the following and find out whether they are tautology, contradictory or contingent :
$2+2+3+3+3=13$
(a) $p \supset(p \supset p)$
(b) $p \supset(\sim p \cdot \sim q)$
(c) $(\sim p \supset q) \equiv(\sim q \supset \sim p)$
(d) $(p \supset q) \vee[(\sim p \cdot q) \supset r]$

Or
What is operation on sets? Explain three operations on set with examples. $2+11=13$
6. Name any five rules of inference with appropriate symbolic expression and construct formal proof of validity of the following : $5+4 \times 2=13$
(a) 1. $A \supset B$
2. $B \supset C$
3. $C \supset D$
4. $\sim D$
5. $A \vee E / \therefore E$
(b) 1. ($C \cdot D) \supset \sim F$
2. $(B \supset D) \cdot(A \supset C)$
3. $B \cdot A$
4. $C / \therefore \sim F$

Or
Name the rules of quantification. Symbolize the following propositions using quantifiers : $3+2 \times 5=13$
(a) Lion exists
(b) Everything is movable
(c) All bananas and mangoes are sweet
(d) Most of the students are intelligent
(e) No human are perfect

