Total No. of Printed Pages-8
1 SEM TDC GEPH (CBCS) GE 1
2022
(Nov/Dec)

PHYSICS

(Generic Elective)
Paper : GE-1
(Mechanics)
Full Marks : 53
Pass Marks : 21
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. শুদ্ধ উত্তবটটে বাছি উनিওবা :
$1 \times 5=5$
Choose the correct answer :
(a) यদि A এটা ভেক্টব বাশি হয় आক সাব্যস্ত কสে, তেন্তে A এটা
If A is a vector quantity and it satisfies $\vec{\nabla} \cdot \vec{A}=0$, then A is a
(i) সংबক্ষিত बाশि conservative quantity
(ii) অসংবক্ষিত বাশি
non-conservative quantity
(iii) (i) আফ (ii) দুয়োটা শুদ্ধ Both (i) and (ii) are correct
(iv) ওপধব এটাও নহয়

None of the above
(b) বশ্ब এটাব গতিব কাবণ

A body is in motion, because of
(i) जসমতুन्ग বলব বাবে unbalanced force
(ii) সমতুল্য बनব বাবে balanced force
(iii) घৰণ্ব বাবে
friction
(iv) ওপবব এটাও নহ্য

None of the above
(c) কৌিिক बেগ (ω) आাক বৈशिक ভববেগ (plব মাজব সম্পক হ'ল
The relation between angular velocity (ω) and linear momentum (p) is
(i) $p=m u r$
(ii) $\nu=\frac{r \omega}{p}$
(iii) $p=m r^{2} \omega$
(iv) $p=\omega$
(d) आপেभিক্ততাদাদ দ্বিতীয় স্বীকার্य অনুসবি, পোহবব বেগ According to the 2nd postulate of the theory of relativity, the velocity of light (i) ध्रवक
is constant
(ii) डেকুবামত পবিবর্তনশীন
changes in vacuum
(iii) צ्रव्बक नহয়
is not constant
(iv) বায়ুত পবিবর্তনশীল changes in air

13)

(e) সबन পর্যাবৃত্ত গতিত থকা পেড্ডুলাম এটাব শক্তি মূলবিন্দুব পবা সর্বোচ্চ বিন্দুলৈ সননি হয়
In simple harmonic motion, from mid point to peak point, the energy of a pendulum changes from
(i) KE পबा PE KE to PE
(ii) PE পবा KE পबा PE PE to KE to PE
(iii) PE পबा KE PE to KE
(iv) ওপবব এটাও নহয়

None of the above
2. তলब यি কোনো ছটা প্রশ্নব উত্ত্ব কবিবা :

Answer any six of the following questions :
(a) यमि (If)

$$
\begin{aligned}
& \vec{A}=4 \hat{i}-5 \hat{j}+3 \hat{k} \\
& \vec{B}=2 \hat{i}-10 \hat{j}-7 \hat{k} \\
& \vec{C}=5 \hat{i}+7 \hat{j}-4 \hat{k}
\end{aligned}
$$

হয়, তেন্তে তনব বাশিটোব মান নিণ্ণ্য কবা :
then calculate the following :

$$
\vec{A} \times(\vec{B} \times \vec{C})
$$

(b) প্রমাণ কबা यে নিউট্টব দ্বিতীয় গতিসূত্র হ'ন প্রকৃত সৃত্র ।

Prove that Newton's second law of motion is real law.
(c) প্রমাণ কবা यে m ভবব উপগ্রহ এটইই পৃথিবী পৃষ্ঠব পবা h উচ্চতাত $R+h$ ব্যাসার্ধব (য’ত R ₹’न পৃथिब्बीব ব্যাসাধ্) পথত পবিভ্রমণ কবিলে
Prove that a satellite of mass m moves in a circular path of radius $R+h$, where R is the radius of the earth, then

$$
h=\frac{g R^{2} T^{2}}{4 \pi^{2}}-R
$$

(d) প্রমাণ কবা যে সকনো বক্ষণশীল বনেই ছৈৈৈিক শক্তিব ঋণাত্মক নতিব সমান।
Prove that every conservative force is same as the negative gradient of potential energy.
(e) সबन পর্यাবৃত্ত গতিব অন্রকলজ সমীকবণব পবা (i) বেগ आক (ii) ज्रবণब মান निर्ণয় कবा।
Using differential equation of SHM, find (i) velocity and (ii) acceleration.
(f) S आ< S^{\prime} প্রসংগ প্রণাनीত বস্তু এটাব দৈর্ঘ্য ক্রমে L_{0} आ< L ₹’ন্নে দেখুওবা যে $L<L_{0}$, য’ত S^{\prime} প্রণালী S প্রণালীब সাপেক্ষে v বেগেबে গতিশীল।
The lengths of an object in inertial frame S and S^{\prime} are L_{0} and L respectively. If S^{\prime} frame moves with velocity v with respect to S, then show that $L<L_{0}$.
(g) GPSब কাयनीতি বর্ণনা কबा।

Write on the working principle of GPS.
3. निম्মোক্ত অব্রকনজ সমীকবণসমূহ সমাধান কবা : $4 \times 2=8$

Solve the following differential equations :
(a) $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0$
(b) $(D-1)^{3} y=16 e^{3 x}$
4. তলब यि কোনো সাতটা প্রশ্নব উত্তব কবা : $4 \times 7=28$

Answer any seven of the following questions:
(a) প্রতিচাপ আক বিকৃতি কাক বোনে ? প্রমাণ কবা যে দৈর্ঘ্য বিকৃতিব ক্ষেত্রত বাহ্যিক বলব দ্বাবা বিকৃত হওতে কোনো বস্তুব বাবে সম্পন্ন হোরা কার্यব মান $\frac{1}{2} \times$ প্রতিচাপ \times বিকৃতি ।
Define stress and strain. Prove that in case of longitudinal strain, the work done in deforming a body is $\frac{1}{2} \times$ stress \times strain.
(b) ভব কেন্দ্র কি? প্রমাণ কবা যে বাহ্যিক বলব অনুপস্থিতিত ভব কেন্দ্রব ত্ববণব মান শূন্য, গত্তিকে ভব কেন্দ্রব বেগ এটা ধ্রেবীয় ভেক্টী বাশি।
What is centre of mass? Prove that in absence of external force, the acceleration of centre of mass is zero and therefore the velocity is a constant vector.
(c) প্রমাণ কবা যে বকেট্ব বেগ

$$
v=u_{0}+v_{r} l_{n} \frac{m_{0}}{m}-g t
$$

16)

য’ত
$v_{r} \rightarrow$ বকেটব সাপপক্ষে গেছন আপেক্ষিক বেগ $m_{0} \rightarrow$ সিব অবস্থাত বকেটব ভব $m \rightarrow$ গতিশীল অরস্ছাত বকেটব ভব
Prove that the velocity of a rocket is

$$
v=u_{0}+v_{r} l_{n} \frac{m_{0}}{m}-g t
$$

where
$v_{r} \rightarrow$ relative velocity of gas with respect to rocket
$m_{0} \rightarrow$ mass of rocket at rest
$m \rightarrow$ mass of rocket at motion
(d) প্রমাণ কবা যে m ডবব বস্তু এটটই কাল্পনিক অক্ষব সাপেক্ষে ঘূবণ কবিনে বস্তুটোব ঘূবণ গতিশক্তি $k=\frac{1}{2} I \omega^{2}$ य’ত I জড়তা ভ্রামক আক ω ক্কেণিক বেগ। উপবোক্ত সমীকবণটো ব্যবহাব কবি বৃত্তাকাব আঙুঠিব বাবে ঘূর্ণন গতিশক্তি নির্ণয় কবা।
Prove that the rotational kinetic energy of an object of mass m rotating about an imaginary axis is $k=\frac{1}{2} I \omega^{2}$ where I is the moment of inertia and ω is angular velocity.
Using the above equation, find the rotational kinetic energy for circular ring.
(e) কেপলাबব সৃত্রকেইটা লিখা।

Write down Kepler's laws.

(7)

(f) প্রমাণ কবা यে $\frac{9}{Y}=\frac{3}{\eta}+\frac{1}{K}$, य’ত
$Y \rightarrow$ ই З্যঙব গুণাংক
$K \rightarrow$ आय্যতন গুণাংক
$\eta \rightarrow$ দৃঢ़णा গুণাংক
Prove that $\frac{9}{Y}=\frac{3}{\eta}+\frac{1}{K}$, where
$Y \rightarrow$ Young's modulus
$K \rightarrow$ bulk modulus
$\eta \rightarrow$ rigidity modulus
(g) 3 किश्रा ভबব বস্তু এটাব ওপবত $\vec{F}=6 \hat{i}+2 \hat{j}+5 \hat{k}$ বन প্রयুক্ত কবাব ফनত यদি বস্তটেেবে $2 \hat{i}+2 \hat{j}+2 \hat{k}$ পबा $6 \hat{i}-\hat{j}+\hat{k}$ দূबত্ব স্থানান্তবিত হয়, তেন্তে কার্যব মান निर्ণ্য কবা।
Find the amount of work done when a force $\vec{F}=6 \hat{i}+2 \hat{j}+5 \hat{k}$ is applied on an object of mass 3 kg and it displaced from $2 \hat{i}+2 \hat{j}+2 \hat{k}$ to $6 \hat{i}-\hat{j}+\hat{k}$.
(h) সबन পর্यাবৃত্তত গতি কবা বস্তু এটlব সबণবোব 3 cm आক 4 cm ও বেগবোব ক্রমে $80 \mathrm{~cm} / \mathrm{sec}$ आক $60 \mathrm{~cm} / \mathrm{sec}$. বস্ভটোব কম্পনব বিস্তাब আক 2.5 cm দূबত্ব অত্ক্রিম কবিবনৈ লগা সময় গণনা কবা।
A body executing SHM has velocities $80 \mathrm{~cm} / \mathrm{sec}$ and $60 \mathrm{~cm} / \mathrm{sec}$ when displacements are 3 cm and 4 cm respectively. Calculate the amplitude of vibration and the time taken to travel 2.5 cm from positive extremity of the oscillation.

18)

(i) পৃথिAী, চদ্দ্র आকా সुर्यব পৃষ্ঠব পবা 1000 km ওপবত বায়ুমণ্ডলীয় কণা এটাব পनায়ন বেগ নিণ্ণয় কবা। দিয়া आছে

পৃথिবীব ভব $=6 \times 10^{24} \mathrm{~kg}$
পৃথिবীब ব্যাসার্ধ $=6 \times 10^{6} \mathrm{~m}$
চন্দ্রব ভব $=7 \times 10^{22} \mathrm{~kg}$
চন্দ্রব ব্যাসার্ধ $=2 \times 10^{6} \mathrm{~m}$
সূर्यব ভব $=2 \times 10^{30} \mathrm{~kg}$
मृर्यब ব্যাসার্ধ $=6.6 \times 10^{8} \mathrm{~m}$
মাধ্যাকর্ষণিক ঞ্রু্রক

$$
=6.6 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Obtain the values of escape velocity for an atmospheric particle 1000 km above the surface of the earth, the moon and the sun. Given
mass of the earth $=6 \times 10^{24} \mathrm{~kg}$ radius of the earth $=6 \times 10^{6} \mathrm{~m}$ mass of the moon $=7 \times 10^{22} \mathrm{~kg}$ radius of the moon $=2 \times 10^{6} \mathrm{~m}$ mass of the sun $=2 \times 10^{30} \mathrm{~kg}$ radius of the sun $=6.6 \times 10^{8} \mathrm{~m}$ gravitational constant

$$
=6.6 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

(j) চমু টোকা নিখা :

Write short notes on :
(i) সময় প্রসাবণ

Time dilation
(ii) গেলিनीয়ান ऊপান্তকবণব সমীকবণ

Galilean transformation equation

