Total No. of Printed Pages-4

3 SEM TDC PHYH (CBCS) C 6

2022 (Nov/Dec)

> PHYSICS (Core)

Paper : C-6

(Thermal Physics)

Full Marks : 53 Pass Marks : 21

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :

 $1 \times 5 = 5$

- (a) In an isochoric process, the first law of thermodynamics is
 - (i) dU = dQ dW
 - (ii) dU = dQ
 - (iii) dU = dW
 - $(iv) \ dW = dQ$

P23/57

(Turn Over)

- (b) In a Carnot engine, if the temperature of the source and sink is increased by the same amount, the efficiency of the engine will
 - (i) increase
 - (ii) decrease
 - (iii) remain same
 - (iv) None of the above
- (c) In which of the following processes entropy remains constant?
 - (i) Isothermal process
 - (ii) Adiabatic process
 - (iii) Isochoric process
 - (iv) Isolated process
- (d) Which of the following expressions defines Gibbs' free energy?
 - $(i) \quad G = PV + TS$
 - (ii) G = U TS + PV
 - (iii) G = U + TS + PV
 - $(iv) \quad G = PV TS$
- (e) For an ideal gas, Joule-Kelvin coefficient μ is
 - (i) 1
 - (ii) -1
 - *(iii)* 0
 - (iv) None of the above

P23/57

(Continued)

Cherese We associated

(3)

2.	(a)	What do you mean by thermodynamic equilibrium?	2
	(b)	What is the basic difference between reversible and irreversible processes?	2
	(c)	State Kelvin-Planck statement of second law of thermodynamics.	2
	(d)	Draw the temperature-entropy diagram for Carnot's cycle.	2
	(e)	What do you mean by adiabatic demagnetization?	2
3.	(a)	Show that entropy of the universe is increasing.	3
	(b)	Derive Clausius-Clapeyron equation.	3
	(c)	State Charles' law. Deduce the Charles' law from kinetic theory. 1+2	=3
	(d)	Deduce most probable velocity from Maxwell's velocity distribution function.	3
4.	(a)	Derive an expression for work done during an adiabatic process.	4
	(b)	Describe the working of refrigerator. Find an expression for its coefficient of	1
		or	4
		State and prove Carnot's theorem	
		Diale and prove currors dicorent.	

P23/57 (Turn Over)

(4)

(c) State and explain the law of equipartition of energy.

Or

Derive an expression of coefficient of viscosity using kinetic theory.

(d) Show that Joule-Thomson coefficient

$$\mu = \frac{1}{C_P} \left[T \left(\frac{\partial V}{\partial T} \right)_P - V \right]$$

$$4$$

4

5

5

- 5. (a) Using Maxwell's thermodynamic relation, show that $C_P C_V = R$.
 - (b) Discuss the results of Andrews' experiment.

Or

Derive Boyle's temperature from van der Waals' equation.

791 -

P23-2300/57

ŋ

3 SEM TDC PHYH (CBCS) C 6