Total No. of Printed Pages-16

1 SEM TDC GEMT (CBCS) GE 1 (A/B/C)

2022
(Nov/Dec)
\section*{MATHEMATICS}
(Generic Elective)
Paper: GE-1

The figures in the margin indicate full marks for the questions

Paper: GE-1 (A)
(Differential Calculus)
Full Marks : 80
Pass Marks : 32
Time: 3 hours

1. (a) কেতিয়া এটা ফ্वन f বন্ধ অন্তব $[a, b] \sigma$ অनबচ্ছিন্ম হোরা বুলি কোন্যা হ্য ?
When is a function f said to be continuous in a closed interval $[a, b]$?
(b) उलব यि কোনো এটাব মান निर्ण्य कबा : 3

Evaluate any one of the following :
(i) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}$
(ii) $\lim _{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$

(2)

(c) f ফननब সংख्ঞा এनেদবে দিয়া आছে

$$
\begin{array}{rlrl}
f(x) & =(1+3 x)^{1 / x}, & & x \neq 0 \\
& =e^{3}, & x=0
\end{array}
$$

দ্থেওুর্বা यে $x=0$ বিস্দুত ফলন অনबচ্ছিন্ন ।
Show that the function f defined by

$$
\begin{array}{rlrl}
f(x) & =(1+3 x)^{1 / x}, & & x \neq 0 \\
& =e^{3}, & x=0
\end{array}
$$

is continuous at $x=0$.
(d) $y=(a x+b)^{m}$ ব n-তম অনকनজ निर्ণয्र कबा y 'ত $n \leq m$ आাক $m, n \in N$.
Find the n-th derivative of $y=(a x+b)^{m}$, where $n \leq m$ and $m, n \in N$.
(e) यदि (If)

$$
y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}
$$

দেখুওবা যে (show that)

$$
\begin{equation*}
\left(1-x^{2}\right) y_{n+2}-(2 n+3) x y_{n+1}-(n+1)^{2} y_{n}=0 \tag{4}
\end{equation*}
$$

2. निবनिটজ্ উপপাদ্যটো উল্লেখ কবা আক প্রমাণ কবা। 5 State and prove Leibnitz's theorem.

(3)

অथবা / Or

यभि (If)

$$
u=\tan ^{-1} \frac{x^{3}+y^{3}}{x-y}
$$

তেন্তে প্রমাণ কবা যে (then prove that)

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u
$$

3. (a) यदि $u=f(x y z)$ इय, তেন্টে $\frac{\partial f}{\partial y}$ निर्ণ্য कबा।

If $u=f(x y z)$, then find $\frac{\partial f}{\partial y}$.
(b) यदि (If)

$$
u=\sin ^{-1}\left\{\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right\}
$$

তেন্তে প্রমাণ কবা যে (then prove that)

$$
\frac{\partial u}{\partial x}=-\frac{y}{x} \frac{\partial u}{\partial y}
$$

(c) यमि $y=\sin ^{2} x$, তেন্大ে y_{n} निर्ণय्य कबा।

If $y=\sin ^{2} x$, then find y_{n}.

141

4. (a) यदि $f=\tan ^{-1} \frac{y}{x}$ इउ़, তেন্大ে $\frac{\partial f}{\partial x}$ निিण্য कबा । 1 If $f=\tan ^{-1} \frac{y}{x}$, then find $\frac{\partial f}{\partial x}$.
(b) দেখুওతা यে এটা ফनন $f(x)=|x|+|x-1|$, এটা বিन্দू

Show that the function f defined as follows, is continuous but not derivable at $x=1, f(x)=|x|+|x-1|$.
(c) यदि (If)

$$
u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

তেন্তে দেখুও্রা যে (then show that)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0 \tag{3}
\end{equation*}
$$

5. (a) $y=x^{2}(a-x)$ বক্রব উপम্পর্শকব দৈर्ұ্য নির্ণয্য কबा।

Find the length of the subtangent to the curve $y=x^{2}(a-x)$.
(b) দেখুও্রা যে, यি কোনো বক্রব ক্সেত্রত

$$
\frac{\text { উभ-অভিলম্ব }}{\text { উপ-স্পর্xক }}=\left(\frac{\text { অडিলম্বব দীঘ }}{\text { স্পর্শকব দীঘ }}\right)^{2}
$$

Show that in any curve

$$
\frac{\text { subnormal }}{\text { subtangent }}=\left(\frac{\text { length of normal }}{\text { length of tangent }}\right)^{2}
$$

(5)

6. (a) यि কোনো বক্রব ক্ষেত্রত উপস্পশ্কক সংষ্ঞ নিখা। 1

Define subtangent to any curve.
(b) $x=a(\theta+\sin \theta)$ आাঝ $y=a(1-\cos \theta)$ বক্রব θ 丁 উপস্পর্শকব দৈর্য্য নির্ণ্য কবা।
Find the lengths of subtangent to $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$ at θ.

Find the asymptotes of the following curve :

$$
x^{3}-2 x^{2} y+x y^{2}+x^{2}-x y+2=0
$$

অथবা / Or
$a^{4} y^{2}=x^{4}\left(2 x^{2}-3 a^{2}\right)$ বক্রব অबश্शন पাক দ্বি-বিन्দू প্রকৃতি নির্ণ্য কবা।
Find the position and nature of the double points of the curve $a^{4} y^{2}=x^{4}\left(2 x^{2}-3 a^{2}\right)$.
8. তलব यি কোনো এটাব মান নির্ণয় কবা :

Evaluate any one of the following :
(a) $y=x\left(x^{2}-1\right)$ বক্রब অনুবেथন निর্ণ্য কबा।

Trace the curve $y=x\left(x^{2}-1\right)$.
(b) দেখুও্বা यে $r=a(1-\cos \theta)$ কাबডিস্যুফफ़ब यि কোনো বिम्दू (r, θ) उ বক্রত ব্যাসাষ $\frac{2}{3} \sqrt{2 a r}$.
Show that the radius of curvature at any point (r, θ) of the cardioid $r=a(1-\cos \theta)$ is given by $\frac{2}{3} \sqrt{2 a r}$.

16)

9. $f(x, y)=0$ বক্রব यि ক্小েনো বিন্দু (x, y) ত বহু বিन्দू ছেবাব প্রয়োজনীয় आক পর্যাপ্ত চর্ত উল্লেথ কবি প্রমাণ কবা।
State and prove the necessary and sufficient condition for any point (x, y) on the curve $f(x, y)=0$ to be a multiple point.

অथবা / Or

এটা বক্রব কার্টেচিয়ান সমীকबণ $y^{\prime}=f(x)$ ₹'बে বক্রব এটা বিन্দুত বক্রতা ব্যাসার্ধ নির্ণ্য কবা ।
Find the radius of curvature at a point of the Cartesian equation of the curve $y=f(x)$.
10. (a) বোলব উপপাদ্যটো নিখা।

State the Rolle's theorem.
(b) $[-1,1]$ অন্তबानত $f(x)=\frac{1}{2-x^{2}}$ ফननब বाবে বোলব উপপাদ্য প্রতিপন্ন কবা।
Verify Rolle's theorem for the function

$$
f(x)=\frac{1}{2-x^{2}}
$$

in the interval $[-1,1]$.
(c) মধ্যমান উপপাদ্য $f(b)-f(a)=(b-a) f^{\prime}$ ($\}$) প্রতিপন্ন कबा य’ত $f(x)=x(x-1)(x-3), a=0, b=\frac{1}{2}$ आ<< ξ ব মান निर्ণয় কবা।
Verify the applicability of the mean value theorem $f(b)-f(a)=(b-a) f^{\prime}(\xi)$, $a<\xi<b$ if $f(x)=x(x-1)(x-3)$, where $a=0, b=\frac{1}{2}$. Also find the value of ξ.

(7)

11. লাগ্রাब্ৰব ম্্যমান উপপাদ্য উম্লেখ কবি প্রমাণ কবা। $1+4=5$ State and prove Lagrange's mean value theorem.

অथना / Or

মেক্নबিনব উপপাদ্য ব্যরহাব কবি $\sin x \bar{\beta}^{x} x$-ব সূচকত অসীম শ্রেণীত বিস্তৃতি কবা।
Using Maclaurin's theorem, expand $\sin x$ in an infinite series in powers of x.
12. (a) यमि (If)

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{\underline{2}} f^{\prime \prime}(\theta x)
$$

তেন্তে θ ব মান উनिওবা যেতিয়া $x \rightarrow 1$ আক य’ত $f(x)=(1-x)^{5 / 2}$.
then find θ when $x \rightarrow 1$ and where $f(x)=(1-x)^{5 / 2}$.
(b) $f(x, y)=x^{3}+y^{3}-3 x-12 x+20$ एलनब সर्বোচ্চ आ< সর্বनिয় মান निর্ণয্য कबा।
Find the maximum and minimum values of the function

$$
f(x, y)=x^{3}+y^{3}-3 x-12 x+20
$$

18)

13. (a) $\log x$ क $x-1$ व मृषकण বिम्তৃতি কबा य’ত $0<x \leq 2$.
Expand $\log x$ in powers of $x-1$ where $0<x \leq 2$.
(b) তলব यি কোনো এটাব মান निর্ণয় কবা :

Evaluate any one of the following :
(i) $\lim _{x \rightarrow 1}\left\{\frac{x}{x-1}-\frac{1}{\log x}\right\}$
(ii) $\lim _{x \rightarrow 0}(\cos x)^{\cot ^{2} x}$
14. (a) লাগ্রাঞ্षব র্রপব অবশশষ থকা মেক্নবিনব উপপাদ্য লিখা। Write the Maclaurin's theorem with Lagrange's form of remainder.
(b) মেক্নबिनব अসीম শ্রেণী ব্যবহাব কবি $\log (1+x)$ ব বিস্তৃতি কबा য’ত $-1<x<1$.
Expand $\log (1+x)$ using Maclaurin's infinite series where $-1<x<1$.

অথবা / Or

লাগ্রাঞ্জব ব্সপব অরশেষ থকা টেই্লবব উপপাদ্য नিথি প্রমাণ কবা।
State and prove Taylor's theorem with Lagrange's form of remainder.

(9)

Paper : GE-1 (B)
 (Object-Oriented Programming in C++)

$$
\frac{\text { Full Marks : } 60}{\text { Pass Marks : } 24}
$$

Time : 3 hours

1. Answer the following questions : $1 \times 5=5$
(a) Define abstraction.
(b) State one difference between C and $\mathrm{C}++$.
(c) Write one characteristic of objectoriented programming language.
(d) What is the use of <iostream.h>?
(e) How are objects created from a class?
2. Answer any five of the following questions :

$$
2 \times 5=10
$$

(a) When do you declare a method or class abstract?
(b) Briefly explain the structure of $\mathrm{C}++$ program.
(c) How does inheritance help us to create new classes?
(d) Why can we not override static method?
(e) State the difference between while loop and do while loop.
(f) Define default constructor and copy constructor.
3. Answer any five of the following questions :

$$
3 \times 5=15
$$

(a) Explain the following operators and their uses :
cin, cout and delete.
(b) Explain the three access modifiers.
(c) What is dynamic binding? Define message passing.
(d) State the difference between break and continue with example.
(e) Define file pointer. What is function prototyping? Explain with example.
(f) Explain the increment and decrement operators in brief.
4. Answer any four of the following questions :

$$
5 \times 4=20
$$

(a) Write a C^{++}program to store information of a book in a structure.
(b) Write a C++ program to overload a unary operator.

(11)

(c) Write a C^{++}program to display Fibonacci series up to 50.
(d) Write a $\mathrm{C}++$ program to implement friend function.
(e) Write a C++ program to count the number of objects created.
5. (a) Explain the different types of inheritance with examples and diagrams.

Or

(b) Explain inline and virtual functions with suitable example.

(12)

Paper : GE-1 (C)
(Finite Element Methods)

$$
\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}
$$

Time : 3 hours

1. (a) Write True or False :

The finite-element method is a piecewise application of a variational method.
(b) Write down the differences between finite difference methods and finite element methods.
(c) Consider the boundary value problem

$$
u^{\prime \prime}+\left(1+x^{2}\right) u+1=0
$$

Determine the coefficients of the approximate solution

$$
W(x)=a_{1}\left(1-x^{2}\right)+a_{2} x^{2}\left(1-x^{2}\right)
$$

by using the least square method.

Or

Using Galerkin's method, solve the boundary value problem

$$
\begin{aligned}
& \nabla^{2} u=-1, \quad|x| \leq 1, \quad|y| \leq 1 \\
& u=0, \quad|x|=1,|y|=1
\end{aligned}
$$

with $h=\frac{1}{2}$.

121

Paper: GE-1 (C)

(Finite Element Methods)

$$
\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}
$$

Time: 3 hours

1. (a) Write True or False :

The finite-element method is a piecewise application of a variational method.
(b) Write down the differences between finite difference methods and finite element methods.
(c) Consider the boundary value problem

$$
u^{\prime \prime}+\left(1+x^{2}\right) u+1=0
$$

Determine the coefficients of the approximate solution

$$
\begin{equation*}
W(x)=a_{1}\left(1-x^{2}\right)+a_{2} x^{2}\left(1-x^{2}\right) \tag{5}
\end{equation*}
$$

by using the least square method.
Or
Using Galerkin's method, solve the boundary value problem

$$
\begin{aligned}
\nabla^{2} u=-1, & & |x| \leq 1, & \\
u=0, & & |x|=1, & |y|=1
\end{aligned}
$$

with $h=\frac{1}{2}$.
he
(c) Discuss briefly with an example about the element assemblage in finite element method.
(d) Write down the importance of sparse matrix in the process of element assemblage with an example.
(e) If the finite solutions at any point (x, y) in an element Ω^{e} is given by

$$
U(x, y)=\sum_{J=1}^{n} U_{J}^{e} \psi_{J}^{e}(x, y)
$$

Find its derivatives.
4. (a) State the properties for a quadratic triangular element.
(b) Give an example of triangular element with a common node.
(c) Illustrate the process of discretization in two-dimensional domain with a suitable example.
(d) Write the importance of isoperimetric element in the process of element assemblage with an example.
5. (a) Write True or False :

Finite element modelling involves the assumptions representation of the system and its behaviour.
(Continued)
(c) Discuss briefly with an example about the element assemblage in finite element method.
(d) Write down the importance of sparse matrix in the process of element assemblage with an example.
(e) If the finite solutions at any point (x, y) in an element Ω^{e} is given by

$$
U(x, y)=\sum_{J=1}^{n} U_{J}^{e} \psi_{J}^{e}(x, y)
$$

Find its derivatives.
4. (a) State the properties for a quadratic triangular element.
(b) Give an example of triangular element with a common node.
(c) Illustrate the process of discretization in two-dimensional domain with a suitable example.
(d) Write the importance of isoperimetric element in the process of element assemblage with an example.
5. (a) Write True or False :

Finite element modelling involves assumptions
representation concerning involves
the representation of the system and its
behaviour.
(b) Write about interpolating function in finite element method. Find an expression for interpolating function in one-dimensional domain.
(c) Calculate the interpolation function for the quadratic triangular element shown in the figure :

(d) Evaluate the integral of the form

$$
I=\int_{(e)} F(x) d x
$$

for the triangular element where $F(x)$ is given function, (e) is the element and x represents multidimensional coordinates.

Or

Consider the quadratic triangular element shown in the figure :

(Turn Over)

(16)

Evaluate the integral of the product

$$
\left(\frac{\partial \Psi_{1}}{\partial x}\right)\left(\frac{\partial \psi_{4}}{\partial x}\right)
$$

at the point $(x, y)=(2,4)$.
6. (a) What are the different types of partial differential equations? Write their field in applications.

4
(b) Find the solution of the boundary value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{1+e^{u}}{2}=0, & |x| \leq 1,
\end{aligned}|y| \leq 1 .
$$

by finite element method (use the three node triangular element).
(c) Use finite element method to solve the boundary value problem

$$
\begin{array}{cc}
\nabla^{2} u=-1, & |x| \leq 1, \\
\frac{\partial u}{\partial x}+u=0, & |x|=1, \\
\hline
\end{array}
$$

with $h=\frac{1}{2}$.

