Total No. of Printed Pages-4

1 SEM TDC MTMH (CBCS) C 1

$$
\begin{gathered}
2022 \\
\text { (Nov/Dec) } \\
\text { MATHEMATICS } \\
\text { (Core) } \\
\text { Paper : C-1 } \\
\text { (Calculus) } \\
\frac{\text { Full Marks : } 60}{\text { Pass Marks : } 24} \\
\text { Time : } 3 \text { hours } \\
\text { The figures in the margin indicate full marks } \\
\text { for the questions }
\end{gathered}
$$

1. (a) Write the value of $\frac{d}{d x} \tanh x$. 1
(b) Write the curve on which the point $(\cosh x, \sinh x)$ lies.
(c) Write the interval on which 'secant' is one-to-one.

1
(d) Find y_{n}, if $y=\sin 5 x \cos 2 x$. 2
(e) Find y_{n}, if $y=x^{3} \sin x$.3
(f) Sketch the general shape of the graph of

$$
y=f(x), \text { where } \frac{d y}{d x}=2+x-x^{2}
$$

121

(g) Find y_{n}, if $y=e^{a x+b} \sin x$.

Or
Evaluate $\lim _{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$.
(h) Find the asymptotes of the curve

$$
y^{2}-x^{2}-2 x-2 y-3=0
$$

Or
For the curve $y=x+\sin 2 x$, $-\frac{2 \pi}{3} \leq x \leq \frac{2 \pi}{3}$, find the local maximum, local minimum and the interval on which the curve is concave up and concave down.
2. (a) Write the washer's area with outer radius $R(x)$ and inner radius $r(x)$.
(b) Obtain the reduction formula for $\int x^{n} e^{-a x} d x$
(c) Obtain the reduction formula for $\int \cos ^{n} x d x$.

Or
Find $\int \tan ^{4} x d x$
(d) Find the value of $\int_{0}^{1} \frac{\sin ^{3} x}{\cos ^{6} x} d x$. 5

131

$$
\mathrm{Or}
$$

Find the volume of the solid generated by revolving the region bounded by the curve $y=x^{2}$ and the line $y=0, x=2$, about x-axis.
3. (a) Write the parametrization of the graph of the function $f(x)=x^{2}$.
(b) If a curve is symmetric about x-axis and the point (r, θ) lies on the graph, then write which of the following also lies on the graph :
(i) $(r, \pi-\theta)$
(ii) $(-r, \pi-\theta)$
(iii) $(-r,-\theta)$
(iv) $(-r, \theta)$
(c) Define a parametric curve.
(d) Write the polar equation of $x y=1$.
(e) Write the equivalent Cartesian equation of $r^{2} \sin 2 \theta=2$.
(f) Find the perimeter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, which is defined parametrically by $x=a \sin t, y=b \cos t$, $a>b$ and $0 \leq t \leq 2 \pi$.

14)

Or
Find the centroid of the first-quadrant arc of the asteroid $x=\cos ^{3} t, y=\sin ^{3} t$, $0 \leq t \leq 2 \pi$.
(g) Find the length of the curve $x=\cos t$, $y=t+\sin t, 0 \leq t \leq \pi$.

Or
Find the centre, foci, vertices of the conic section $x^{2}+2 x+4 y-3=0$.
4. (a) Define a vector function.
(b) Write the value of $(\vec{u} \times \vec{v}) \cdot \vec{v}$. 1
(c) Define triple scalar product of vectors.2
(d) Show that vector and its first derivative are orthogonal.

> Or

Evaluate $\int_{0}^{1}\left(t e^{t^{2}} \hat{i}+e^{-t} \hat{j}+\hat{k}\right) d t$.
(e) Find the unit tangent vector of the curve $\vec{r}(t)=\sin 2 t \hat{i}+\cos 2 t \hat{j}+\hat{k}, 0 \leq t \leq \pi$.

Find the acceleration of the particle described by $\vec{r}=(t-1) \hat{i}+\left(t^{2}-1\right) \hat{j}+2 t \hat{k}$ at $t=1$.

