Total No. of Printed Pages-11
3 SEM TDC GEMT (CBCS) GE 3 (A/B/C)

$$
\begin{gathered}
2022 \\
\text { (Nov/Dec) }
\end{gathered}
$$

MATHEMATICS

(Generic Elective)
Paper: GE-3
Full Marks : 80
Pass Marks : 32
Time : 3 hours

The figures in the margin indicate full marks
for the questions
Paper : GE-3A
(Real Analysis)

1. (a) Define countable set. 1
(b) Show that the set \mathbb{Z} of all integers is denumerable.3
(c) Show that if $a b>0$, then either (i) $a>0$ and $b>0$ or (ii) $a<0$ and $b<0$.2
(d) If $a \in \mathbb{R}$ is such that $0 \leq a \leq \varepsilon$ for every $\varepsilon>0$, then show that $a=0$.
(e) Prove that if $x \in \mathbb{R}$, then there exists a positive integer n such that $x \leq n$.

Or

Prove that if x and y are real numbers with $x<y$, then there exists a rational number $r \in \mathbb{Q}$ such that $x<r<y$.
2. (a) Define an open interval.
(b) Show that if $y>0$, then there exists $n_{y} \in \mathbb{N}$ such that $n_{y}-1 \leq y \leq n_{y}$.
(c) Show that if $I_{n}=\left[a_{n}, b_{n}\right], n \in \mathbb{N}$ is a nested sequence of closed, bounded intervals such that the lengths $b_{n}-a_{n}$ of I_{n} satisfy $\inf \left\{b_{n}-a_{n}: n \in \mathbb{N}\right\}=0$, then the number ξ contained in I_{n} for all $n \in \mathbb{N}$ is unique.

Or

Prove that the set \mathbb{R} of real numbers is not countable.
3. (a) Define limit of a sequence. 1
(b) Define bounded sequence. 1
(c) Prove that the sequence (n) is divergent. 2
(d) Prove any one of the following :
(i) $\lim \left(\frac{1}{n^{2}+1}\right)=0$
(ii) $\lim \left(\frac{3 n+2}{n+1}\right)=3$

3.$)$

(e) Show that every convergent sequence of real numbers has a unique limit.

Or

Prove that a convergent sequence of real numbers is bounded.
4. (a) Define Cauchy sequence.
(b) Prove that every convergent sequence is a Cauchy sequence.
(c) Prove that every sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Or
Prove that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent sequences of real numbers and if $x_{n} \leq y_{n} \quad$ for all $n \in \mathbb{N}$, then $\lim \left(x_{n}\right) \leq \lim \left(y_{n}\right)$.

5. (a) Define alternating series.

(b) Prove that if the series Σx_{n} converges, then $\lim \left(x_{n}\right)=0$.
(c) Prove that the series

$$
\sum \frac{\sin n x}{n^{2}}
$$

is absolutely convergent.

14)

(d) Show that the series Σx_{n} converges if and only if for every $\varepsilon>0$, there exists $M(\varepsilon) \in \mathbb{N}$ such that if $m>n \geq M(\varepsilon)$, then

$$
\begin{equation*}
\left|S_{m}-S_{n}\right|=\left|x_{n+1}+x_{n+2}+\ldots+x_{m}\right|<\varepsilon \tag{4}
\end{equation*}
$$

Or

Prove that the alternating series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

is convergent.
6. (a) Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

is convergent.
Or

Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

is divergent.
(b) Test for convergence (any one):
(i) $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots$ to ∞
(ii) $\frac{1^{2} \cdot 2^{2}}{1!}+\frac{2^{2} \cdot 3^{2}}{2!}+\frac{3^{2} \cdot 4^{2}}{3!}+\cdots$ to ∞

(5)

7. (a) Define limit of a sequence of functions. 1
(b) Write the statement of Weierstrass M-test.
(c) Prove that the sequence $\left(f_{n}\right)$, where

$$
f_{n}(x)=\frac{x}{n}, x \in \mathbb{R}
$$

is pointwise convergent on \mathbb{R}.
3
(d) Prove that the sequence $\left(f_{n}\right)$, where $f_{n}(x)=\frac{1}{x+n}$ is uniformly convergent on any interval $[0, b], b>0$.
8. (a) Define radius of convergence of a power series.
(b) If the radius of convergence of a power series is zero, then the series
(i) converges everywhere;
(ii) converges nowhere.

Write the correct answer.
(c) Prove that if R is the radius of convergence of $\Sigma a_{n} x^{n}$ and K be a closed and bounded interval contained in the interval of convergence $(-R, R)$, then the power series converges uniformly on K.

Or

Prove that a power series can be integrated term-by-term over any closed and bounded interval.
(d) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$, where (any one)
(i) $a_{n}=\frac{n^{n}}{n!}$
(ii) $a_{n}=\frac{(n!)^{2}}{(2 n)!}$

(7)

Paper : GE-3B
 (Cryptography and Network Security)

1. (a) Distinguish between conventional and public-key cryptosystems. What are the basic requirements of a public-key cryptosystem?
$3+3=6$
(b) Explain active attack and passive attack with real-life examples.
$3+3=6$
(c) What is message authentication? Define the classes of message authentication function. What are the requirements for message authentication? $2+3+4=9$
(d) Differentiate between MAC and Hash
function.
2. Explain the Secure Hash Algorithm (SHA) with neat diagram.

Illustrate MD5 algorithm in detail.
3. Write a note on any one of the following :
(a) DSS
(b) TCP session hijacking
(c) Teardrop attack
(d) SSL

(8)

4. Explain the architecture of IP security in detail.

Or
What are transport and tunnel modes in IPsec? Describe how ESP is applied to both these modes.
5. (a) Explain SNMP architecture in detail.
(b) What is firewall? Describe how firewall can be used to protect the network.

Or
Describe the working of Secure Electronic Transaction (SET) with neat diagram.
6. Write short notes on any two of the following :
(a) VPN
(b) Smurf attack
(c) Intrusion Detection System (IDS)
(d) Encapsulating Security Payload (ESP)

$$
\begin{gathered}
(9) \\
\text { Paper : GE-3C } \\
\text { (Information Security) }
\end{gathered}
$$

1. Answer any five of the following questions :

$$
2 \times 5=10
$$

(a) What is user authentication in information security?
(b) What is cryptography?
(c) Define virus.
(d) What are worms in terms of information security?
(e) What is cipher?
(f) How does a plain text differ from cipher text?
(g) What is a hash function?
2. (a) Compare and contrast protection and security.
(b) Briefly explain any three aspects of security from the following : $\quad 4 \times 3=12$
(i) Data availability
(ii) Privacy
(iii) Data integrity
(iv) Authentication

(10)

3. Briefly explain any three of the following :

$$
5 \times 3=15
$$

(a) Trojan horse
(b) Trap door
(c) Stack
(d) Buffer flow
4. How do system threats differ from communication threats? Explain with examples.
$4+6=10$
5. (a) How does substitution cipher differ from transposition cipher?
(b) How does public-key cryptography differ from private-key cryptography? 5

Or
Briefly explain the functionalities of Data Encryption Standard (DES).
6. Briefly explain the functionalities of digital signatures. What is MAC?

(11)

7. Explain any two of the following :
$5 \times 2=10$
(a) Intrusion detection
(b) Tripwire
(c) RSA algorithm
(d) Diffie-Hellman key exchange
