Total No. of Printed Pages-4

3 SEM TDC MTMH (CBCS) C 7

2022
 (Nov/Dec)
 MATHEMATICS
 (Core)

Paper : C-7

(PDE and Systems of ODE)

$$
\frac{\text { Full Marks : } 60}{\text { Pass Marks : } 24}
$$

Time: 3 hours
The figures in the margin indicate full marks
for the questions

1. (a) Find the degree of the equation

$$
x \frac{\partial^{2} z}{\partial x^{2}}+y\left(\frac{\partial z}{\partial y}\right)^{1 / 3}+K z=0
$$

(b) Define linear partial differential equation.
(c) Write the general form of Lagrange's equation.
(d) Form the PDE by eliminating the arbitrary functions f and ϕ from

$$
\begin{gathered}
z=y f(x)+x \phi(y) \\
O r
\end{gathered}
$$

Solve :

$$
\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y
$$

121

(e) Find the integral surface of the equation $(x-y) y^{2} p+(y-x) x^{2} q=\left(x^{2}+y^{2}\right) z$ which passes through the curve $x z=a^{3}, y=0$.

Or

Solve :

$$
\sqrt{p}+\sqrt{q}=1
$$

2. (a) Write the Jacobi's subsidiary equations.
(b) Find the complete integral of any one of the following :
(i) $\left(p^{2}+q^{2}\right) y=q z$
(ii) $p x y+p q+q y=y z$
(iii) $p=(z+q y)^{2}$
(c) Find the complete integral of

$$
\begin{equation*}
p_{3} x_{3}\left(p_{1}+p_{2}\right)+x_{1}+x_{2}=0 \tag{6}
\end{equation*}
$$

Or
Solve the boundary value problem $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}=u$ with $u(x, 0)=6 e^{-3 x}$ by the method of separation of variables.
3. (a) Write the Laplace equation.
(b) Classify the following equations :
(i) $\begin{aligned} &\left(1-x^{2}\right) \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+\left(1-y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}} \\ &+ 2 x \frac{\partial z}{\partial x}+6 x^{2} y \frac{\partial z}{\partial y}-6 z=0\end{aligned}$
(ii) $u_{x x}+u_{y y}+u_{z z}+u_{y z}+u_{z y}=0$

(3)

(c) Reduce the equation

$$
y(x+y)(r-s)-x p-y q-z=0
$$

to canonical form.

Or

Derive the one-dimensional wave equation.
4. (a) Fill in the blank :

The PDE in case of vibrating string problem is formulated from the law of \qquad .
(b) Write one-dimensional heat equation.
(c) Solve

$$
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}=0
$$

using the method of separation of variables.

Or

Find the solution of $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ such that $y=p_{0} \cos p t$ where p_{0} is constant when $x=l$ and $y=0$ when $x=0$.
5. (a) Give an example of a linear system of ordinary differential equation with variable coefficient.

(4)

(b) Transform the linear differential equation $\frac{d^{3} x}{d t^{3}}+2 \frac{d^{2} x}{d t^{2}}-\frac{d x}{d t}-2 x=e^{3 t}$ into system of first order differential equation.
(c) Prove that $x=2 e^{t}, y=-3 e^{2 t}$ is the solution of $\frac{d x}{d t}=5 x+2 y, \frac{d y}{d t}=3 x+4 y$.
(d) Describe the method of successive approximation.

Or

Find first two approximations of the function that approximate the exact solution of the equation $\frac{d y}{d x}=x+y, y(0)=1$.
(e) Find the general solution of the system:

$$
\begin{equation*}
\frac{d x}{d t}=x+2 y, \frac{d y}{d t}=3 x+2 y \tag{6}
\end{equation*}
$$

Or
Using operator method, find the general solution of

$$
\frac{d x}{d t}+\frac{d y}{d t}-2 x-4 y=e^{t}, \frac{d x}{d t}+\frac{d y}{d t}-y=e^{4 t}
$$

