Total No. of Printed Pages-4

3 SEM TDC MTMH (CBCS) C 7

2022 (Nov/Dec) MATHEMATICS (Core) Paper : C-7

(PDE and Systems of ODE)

Full Marks : 60 Pass Marks : 24

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. (a) Find the degree of the equation

 $x\frac{\partial^2 z}{\partial x^2} + y\left(\frac{\partial z}{\partial y}\right)^{1/3} + Kz = 0 \qquad 1$

- (b) Define linear partial differential equation.
- (c) Write the general form of Lagrange's equation.
- (d) Form the PDE by eliminating the arbitrary functions f and ϕ from 5 $z = uf(x) + x \phi(y)$

Solve :

$$(x^{2} - yz)p + (y^{2} - zx)q = z^{2} - xy$$

(Turn Over)

1

1

P23/55

(e) Find the integral surface of the equation $(x-y) y^2 p + (y-x) x^2 q = (x^2 + y^2) z$ which passes through the curve $xz = a^3$, y = 0. 5 Or

Solve :

$$\sqrt{p} + \sqrt{q} = 1$$

- 2. (a) Write the Jacobi's subsidiary equations.
 (b) Find the complete integral of any one of the following :
 - (i) $(p^2 + q^2)y = qz$
 - (ii) pxy + pq + qy = yz

(iii)
$$p = (z + qy)^2$$

(c) Find the complete integral of

$$p_3 x_3 (p_1 + p_2) + x_1 + x_2 = 0$$

Or

Solve the boundary value problem $\frac{\partial u}{\partial x} - 2 \frac{\partial u}{\partial y} = u$ with $u(x, 0) = 6e^{-3x}$ by the method of separation of variables.

3. (a) Write the Laplace equation.

(b) Classify the following equations :

(i)
$$(1-x^2)\frac{\partial^2 z}{\partial x^2} - 2xy\frac{\partial^2 z}{\partial x \partial y} + (1-y^2)\frac{\partial^2 z}{\partial y^2} + 2x\frac{\partial z}{\partial x} + 6x^2y\frac{\partial z}{\partial y} - 6z = 0$$
 2

$$(u) \quad u_{xx} + u_{yy} + u_{zz} + u_{yz} + u_{zy} = 0$$

P23/55

(Continued)

1

2

6

$$y(x+y)(r-s) - xp - yq - z = 0$$

to canonical form.

Or

Derive the one-dimensional wave equation.

4. (a) Fill in the blank :

The PDE in case of vibrating string problem is formulated from the law of _____.

- (b) Write one-dimensional heat equation.
- (c) Solve

$$\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 0$$

using the method of separation of variables.

Or

Find the solution of $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ such that $y = p_0 \cos pt$ where p_0 is constant when x = l and y = 0 when x = 0.

5. (a) Give an example of a linear system of ordinary differential equation with variable coefficient.

(Turn Over)

7

1

1

6

1

⁽c) Reduce the equation

- (b) Transform the linear differential equation $\frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = e^{3t}$ into of first order differential system equation.
- (c) Prove that $x = 2e^t$, $y = -3e^{2t}$ is the solution of $\frac{dx}{dt} = 5x + 2y$, $\frac{dy}{dt} = 3x + 4y$.
- Describe the method of successive (d)approximation.

Or

Find first two approximations of the function that approximate the exact solution of the equation $\frac{dy}{dx} = x + y, y(0) = 1.$

(e) Find the general solution of the system :

$$\frac{dx}{dt} = x + 2y, \frac{dy}{dt} = 3x + 2y \qquad 6$$

Or

Using operator method, find the general solution of

$$\frac{dx}{dt} + \frac{dy}{dt} - 2x - 4y = e^t, \frac{dx}{dt} + \frac{dy}{dt} - y = e^{4t}$$

3 SEM TDC MTMH (CBCS) C 7

P23-2500/55

(4)

4

2