Total No. of Printed Pages-4

3 SEM TDC MTMIH (CBCS) C 6

$$
\begin{gathered}
2022 \\
(\text { Nov/Dec) }
\end{gathered}
$$

MATHEMATICS

(Core)
Paper : C-6
(Group Theory-I)
Full Marks : 80
Pass Marks: 32
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. (a) Write each symmetry in D_{3} (the set of symmetries of an equilateral triangle).
(b) What is the inverse of $n-1$ in $U(n), n>2$? 1
(c) The set $\{5,15,25,35\}$ is a group under multiplication modulo 40 . What is the identity element of this group?
(d) Let a and b belong to a group G. Find an x in G such that $x a b x^{-1}=b a$.2
(e) Show that identity element in a group is2 unique.
(f) Find the order of each element of the group ($\{0,1,2,3,4\},{ }_{5}$).

121

(g) Show that the four permutations I, $(a b)$, $(c d),(a b)(c d)$ on four symbols a, b, c, d form a finite Abelian group with respect to the permutation multiplication.
2. (a) In Z_{10}, write all the elements of $\langle 2\rangle$. 1
(b) With the help of an example, show that union of two subgroups of a group G is not necessarily a subgroup of G.
(c) Define centre of an element of a group and centre of a group.
(d) Let G be a group and $a \in G$. Then prove that the set $H=\left\{a^{n} \mid n \in Z\right\}$ is a subgroup of G.
(e) Prove that the centre of a group G is normal subgroup of G.
(f) Let H and K be two subgroups of a group G. Then prove that $H K$ is a subgroup of G if and only if $H K=K H$.
3. (a) If $|a|=30$, find $\left\langle a^{26}\right\rangle$.
(b) List the elements of the subgroup $<20>$ in Z_{30}.
(c) Find all generators of Z_{6}. 2
(d) Express the permutation

$$
f=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 6 & 5 & 3 & 4 & 2
\end{array}\right)
$$

as a product of disjoint cycles.

(3)

(e) Find $O(f)$ where

$$
f=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 5 & 3 & 1
\end{array}\right)
$$

(f) Let a be an element of order n in a group and let k be a positive integer. Then prove that
$<a^{k}>=<a^{\operatorname{gcd}(n, k)}>$ and $\left|a^{k}\right|=\frac{n}{\operatorname{gcd}(n, k)}$

Or

Prove that any two right cosets are either identical or disjoint.
(g) Prove that a group of prime order is cyclic.
(h) State and prove Lagrange's theorem.

4. (a) Define external direct product.

(b) Compute $U(8) \oplus U(10)$. Also find the product $(3,7)(7,9)$.
(c) Prove that quotient group of a cyclic group is cyclic.
(d) If H is a normal subgroup of a finite group G, then prove that for each $a \in G$, $O(H a) \mid O(a)$.
(e) Let G be a finite Abelian group such that its order $O(G)$ is divisible by a prime p. Then prove that G has at least one element of order p.

(4)

Or

Let H be a subgroup of a group G such that $x^{2} \in G, \forall x \in G$. Then prove that H is normal subgroup of G. Also prove that $\frac{G}{H}$ is Abelian.
5. (a) Let $(Z,+)$ and $(E,+)$ be the group of integers and even integers respectively. Show that $f: Z \rightarrow E$ defined by $f(x)=2 x, \forall x \in Z$ is a homomorphism. 2
(b) Prove that a homomorphic image $f: G \rightarrow G^{\prime}$ is one-one if and only if $\operatorname{ker} f=\{e\}$, where e is the identity of G.
(c) Prove that every group G is isomorphic to a permutation group.
(d) Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.

Or

Let H be a normal subgroup of G and K be a subgroup of G. Then prove that

$$
\frac{H K}{H} \cong \frac{K}{H \cap K}
$$

$\star \star \star$

