Total No. of Printed Pages-4

3 SEM TDC MTMH (CBCS) C 6

2022

(Nov/Dec)

MATHEMATICS

(Core)

Paper : C-6

(Group Theory-I)

Full Marks : 80 Pass Marks : 32

Time : 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	Write each symmetry in D_3 (the set of symmetries of an equilateral triangle). 1
	(b)	What is the inverse of $n-1$ in $U(n)$, $n > 2$? 1
	(c)	The set {5, 15, 25, 35} is a group under multiplication modulo 40. What is the identity element of this group?1
	(d)	Let a and b belong to a group G. Find an x in G such that $xabx^{-1} = ba$. 2
	(e)	Show that identity element in a group is unique.
	ſſ	Find the order of each element of the group ($\{0, 1, 2, 3, 4\}, +_5$). 3
P23/	54	(Turn Over)

(2)

	(g)	Show that the four permutations I , (ab) , (cd) , $(ab)(cd)$ on four symbols a , b , c , d form a finite Abelian group with respect to the permutation multiplication	-
2	(a)	In Zee write all the element of a	5
440	(b)	With the help of an example, show that	1
	()	union of two subgroups of a group G is not necessarily a subgroup of G.	2
	(c)	Define centre of an element of a group and centre of a group.	2
	(d)	Let G be a group and $a \in G$. Then prove that the set $H = \{a^n \mid n \in Z\}$ is a subgroup of G	
	(e)	Prove that the centre of a group G is	2
		normal subgroup of G.	4
	(f)	Let H and K be two subgroups of a group G . Then prove that HK is a	
		subgroup of G if and only if $HK = KH$.	4
3.	(a)	If $ a = 30$, find $< a^{26} >$.	1
	(b)	List the elements of the subgroup $< 20 >$	
		in Z ₃₀ .	1
	(c)	Find all generators of Z_6 .	2
	(d)	Express the permutation	
		$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 5 & 3 & 4 & 2 \end{pmatrix}$	
		as a product of disjoint cycles.	2

P23/54

(Continued)

(e) Find O(f) where

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 3 & 1 \end{pmatrix}$$

(f) Let a be an element of order n in a group and let k be a positive integer. Then prove that

$$< a^k > = < a^{\gcd(n, k)} > \text{ and } |a^k| = \frac{n}{\gcd(n, k)}$$

Or

Prove that any two right cosets are either identical or disjoint.

(g) Prove that a group of prime order is cyclic.

(h) State and prove Lagrange's theorem.

- 4. (a) Define external direct product. 1
 - (b) Compute U(8) ⊕ U(10). Also find the product (3, 7)(7, 9).
 - (c) Prove that quotient group of a cyclic group is cyclic.
 - (d) If H is a normal subgroup of a finite group G, then prove that for each $a \in G$, O(Ha) | O(a).
 - (e) Let G be a finite Abelian group such that its order O(G) is divisible by a prime p. Then prove that G has at least one element of order p.

(Turn Over)

2

4

3

5

2

3

4

5

Or

Let *H* be a subgroup of a group *G* such that $x^2 \in G$, $\forall x \in G$. Then prove that *H* is normal subgroup of *G*. Also prove that $\frac{G}{H}$ is Abelian.

- 5. (a) Let (Z, +) and (E, +) be the group of integers and even integers respectively. Show that $f: Z \to E$ defined by $f(x) = 2x, \forall x \in Z$ is a homomorphism.
 - (b) Prove that a homomorphic image $f: G \rightarrow G'$ is one-one if and only if ker $f = \{e\}$, where e is the identity of G.
 - (c) Prove that every group G is isomorphic to a permutation group.
 - (d) Prove that every homomorphic image of a group G is isomorphic to some quotient group of G.

Or

Let H be a normal subgroup of G and K be a subgroup of G. Then prove that

$$\frac{HK}{H} \cong \frac{K}{H \cap K}$$

P23-2500/54

3 SEM TDC MTMH (CBCS) C 6

2

3

5

5