Total No. of Printed Pages -7

3 SEM TDD TM (CBS) C 5

> 2022
> $($ Nov/Dec)

MATHEMATICS

(Core)
Paper : C-5
(Theory of Real Functions)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$
Time : 3 hours
The figures in the margin indicate full marks for the questions

1. (a) State the divergence criteria of a limit of a function.
(b) Define cluster point of a set with an example.
$1+1=2$
(c) Use $\varepsilon-\delta$ definition to establish that

$$
\lim _{x \rightarrow c} x^{2}=c^{2}
$$

(d) Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $c \in \mathbb{R}$, a cluster point of A. Show that if f has a limit, when $x \rightarrow c$, then f is bounded.
(e) Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $c \in \mathbb{R}$, a cluster point of A. If $a \leq f(x) \leq b, \forall x \in A$ and $x \neq c$, and $\lim _{x \rightarrow c} f(x)$ exists, then show that

$$
\begin{equation*}
a \leq \lim _{x \rightarrow c} f(x) \leq b \tag{3}
\end{equation*}
$$

(f) State and prove squeeze theorem. $1+3=4$
(g) Show by using definition that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty \tag{3}
\end{equation*}
$$

(h) Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $c \in A$. Then establish any one of the following :
(i) If f is continuous at $c \in A$, then given any ε-neighbourhood $V_{\varepsilon}(f(c))$ of $f(c), \exists$ a δ-neighbourhood $V_{\delta}(c)$ of c, such that if $x \in A \cap V_{\delta}(c)$, then

$$
f(x) \in V_{\varepsilon}(f(c))
$$

13)

(ii) Let given any ε-neighbourhood $V_{\varepsilon}(f(c))$ of $f(c), \exists$ a δ-neighbourhood $V_{\delta}(c)$ of c, such that if $x \in A \cap V_{\delta}(c)$, then $f(x) \in V_{\varepsilon}(f(c))$. Then f is continuous at $c \in A$.
(i) Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and define $|f|$ by $(|f|)(x)=|f(x)|, \forall x \in A$. Show that if f is continuous at $c \in A$, then $|f|$ is also continuous at $c \in A$.

Or

Let $f: A \rightarrow \mathbb{R}$ where $A \subseteq \mathbb{R}$ and $f(x) \geq 0$, $\forall x \in A$. Defined \sqrt{f} by $(\sqrt{f})(x)=\sqrt{f(x)}$, $\forall x \in A$. Show that if f is continuous at $c \in A$, then \sqrt{f} is continuous at c.
(j) State and prove location roots theorem.

$$
1+3=4
$$

Or

Let I be a closed and bounded interval, and $f: I \rightarrow \mathbb{R}$ is continuous on I. Then show that $f: I \rightarrow \mathbb{R}$ is uniformly continuous.
2. (a) Define relative maximum of a realvalued function at a point.
(b) State the first derivative test for the relative maximum at a point of a realvalued function.
(c) Show that if $f: I \rightarrow \mathbb{R}$ is differentiable and $f(x) \geq 0, \forall x \in I$, then f is increasing on I.
(d) Using first derivative test, show that $f(x)=x^{2}$ has a minima at $x=0$.
(e) State and prove the interior extremum theorem.

Or

Let $f: I \rightarrow \mathbb{R}$ be differentiable at c. If $f^{\prime}(c)<0$, then show that

$$
f(x)>f(c), \quad \forall x \in(c-\delta, c)
$$

(f) State and prove Caratheodory's
theorem

(5)

(g) Use mean value theorem to show that if $f(x)=\sin x$ which is differentiable, $\forall x \in \mathbb{R}$, then

$$
|\sin x-\sin y| \leq|x-y| \quad \forall x, y \in \mathbb{R}
$$

Or
Use mean value theorem to show that

$$
-x \leq \sin x \leq x \quad \forall x \geq 0
$$

(h) State and prove the mean value theorem.
(i) State and prove Darboux's theorem. 4

Or

Use mean value theorem to show that

$$
e^{x} \geq 1+x \forall x \in \mathbb{R}
$$

and hence show that $e^{\pi}>\pi^{e}$.
3. (a) Define a convex function on an interval and give its geometrical interpretation.

16)

(b) Show that the function $f(x)=x^{3}$ has no relative extremum at $x=0$.
(c) Show that

$$
f(x)=x+\frac{1}{x} ; x>0
$$

is a convex function.
(d) Determine relative extrema of the function

$$
f(x)=x^{4}+2 x^{3}-k
$$

where k is a constant.
(e) State and prove Cauchy's mean value theorem.
(f) State and prove Taylor's theorem with Lagrange's form of remainder.
(g) Define Taylor's and Maclaurin's series. Obtain Maclaurin's series for the function $\sin x$.

Or

Show that

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{\underline{2 n}} \forall x \in \mathbb{R}
$$

市 $\stackrel{\star}{\star}$

