Total No. of Printed Pages-7

1 SEM TDC CHMH (CBCS) C 1

$$
\begin{gathered}
2022 \\
\text { (Nov/Dec) } \\
\text { CHEMISTRY } \\
\text { (Core) } \\
\text { Paper : C-1 } \\
\text { (Inorganic Chemistry) }
\end{gathered}
$$

$\frac{\text { Full Marks : } 53}{\text { Pass Marks : } 21}$
Time : 3 hours
The figures in the margin indicate full marks
for the questions

1. Choose the correct answer : $\quad 1 \times 6=6$
(a) Which of the following are the possible values of n, l and m for an atom having maximum value of $m= \pm 2$?
(i) $n=4, l=3, m=+2$
(ii) $n=3, l=2, m=-2$
(iii) $n=3, l=3, m=+2$
(iv) $n=4, l=3, m=-2$

121

(b) The ground-state energy for H atom is $-13 \cdot 6 \mathrm{eV}$. Ground-state energy for Li^{2+} is
(i) -3.4 eV
(ii) -13.6 eV
(iii) -40.8 eV
(iv) -122.5 eV
(c) Which of the following species has the highest electronegativity?
(i) C [sp-hybridized]
(ii) $\mathrm{N}\left[\mathrm{s} p^{2}\right.$-hybridized]
(iii) N [sp-hybridized]
(iv) $\mathrm{C}\left[s p^{3}\right.$-hybridized]
(d) Which of the following has highest lattice energy?
(i) BeO
(ii) MgO
(iii) CaO
(iv) SrO
(e) What type of hybridization is possible in square planar complexes?
(i) $s p^{3} d$
(ii) $s p^{3} d^{2}$
(iii) $d s p^{2}$
(iv) $d^{4} s$
(f) Which compound has maximum covalent character?
(i) MgCl_{2}
(ii) BeCl_{2}
(iii) BaCl_{2}
(iv) CaCl_{2}
2. Answer the following questions : $2 \times 9=18$
(a) State Heisenberg's uncertainty principle. Write the mathematical statement of the principle in terms of energy and time.
(b) Calculate the wavelength (in nanometer) associated with a proton moving at $1.0 \times 10^{3} \mathrm{~ms}^{-1}$. [Mass of the proton $=$ $1.67 \times 10^{-27} \mathrm{~kg}$ and $\left.h=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right]$
(c) Write down the Schrödinger's wave equation and give the significance of ψ and ψ^{2}.
(d) What is Born-Haber cycle? Explain its applications and limitations.
(e) What is radial probability distribution function? Draw the radial distribution curve for $2 p$-orbital.

141

(f) What do you mean by polarization? Discuss Fajan's rules.
(g) Draw different shapes of the d-orbitals.
(h) What is the relation between solvation energy and lattice energy of an ionic crystal? Justify with suitable example.
(i) $4 s$-orbital filled first followed by $3 d$ orbital, but removal of electron initially take place from 4 s . Why, give reason.
Or

Arrange the following in order of increasing bond order or bond length :

$$
\mathrm{O}_{2} ; \mathrm{O}_{2}^{-} ; \mathrm{O}_{2}^{+} ; \mathrm{O}_{2}^{2+}
$$

3. Answer any two of the following questions:

$$
4 \times 2=8
$$

(a) How can lattice energy of an ionic crystal be calculated theoretically? Deduce the equation. Give the limitation of Born-Landé equation. $3+1=4$
(b) (i) The first ionization energy of Be is higher than that of B, while the second ionization energy of B is higher than that of Be. Explain giving reason.

15)

(ii) Explain why the dipole moment of NF_{3} is nearly zero.
$2+2=4$
(c) Discuss the metallic bonding in terms of band theory. Explain the following properties of metals in terms of Band theory :
$2+1+1=4$
(i) Semi-conductor and conductor
(ii) Insulator
4. Answer any two of the following questions :

$$
3 \times 2=6
$$

(a) Define Pauling scale of electronegativity. The ionic resonance energy of $\mathrm{C}-\mathrm{H}$ bond is 5.75 kcal . The electronegativity of H is $2 \cdot 1$. Find the electronegativity of carbon.
(b) Draw the resonating structures of the following molecules and ions :
(i) O_{3}
(ii) $\mathrm{NO}_{3}^{=}$
(iii) $\mathrm{CO}_{3}^{=}$

161

(c) What is lattice energy? Calculate the lattice energy of NaCl with the help of the following data : $\quad 1+2=3$

$$
\begin{aligned}
& \text { Electronic charge }=4.8 \times 10^{-10} \text { esu } \\
& \text { Born exponent }=9 \\
& \text { Madelung constant for } \mathrm{NaCl}=1.748
\end{aligned}
$$

Ionic radius of $\mathrm{Na}^{+}=0.95 \AA$
Ionic radius of $\mathrm{Cl}^{-}=1.81 \AA$
Avogadro no. $(N)=6.023 \times 10^{23}$
(d) What do you mean by hydrogen bonding? Mention the electrostatic theory of hydrogen bonding and discuss its limitation.

$$
1+11 / 2+1 / 2=3
$$

5. Answer any four of the following questions :

$$
3 \times 4=12
$$

(a) What is formal charge? Calculate the formal charge in CO_{3}^{2-} ion.

$$
11 / 2+11 / 2=3
$$

(b) Define Slater's rule. Calculate the effective nuclear charge for valence electron of K atom.

$$
1+2=3
$$

(c) Draw the molecular orbital energy level diagram for O_{2} molecule. Explain the paramagnetic nature of O_{2} with MOT.

$$
2+1=3
$$

(d) Using VSEPR theory, predict the structure of the following : $1 \times 3=3$
(i) BF_{3}
(ii) XeO_{3}
(iii) PCl_{5}
(e) What are weak intermolecular forces? Outline the role of induced dipole interaction in inter-molecular bonding.

$$
11 / 2+11 / 2=3
$$

(f) Explain the following:
$11 / 2 \times 2=3$
(i) o-Nitrophenol is more volatile than p-nitrophenol.
(ii) Boiling point of $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$ although electronegativity of $\mathrm{F}>\mathrm{O}>\mathrm{N}$.
6. How is standard electrode potential used in the volumetric estimation of oxalate using KMnO_{4} ? Why is KMnO_{4} a secondary standard?

$$
2+1=3
$$

$$
\star \star \star
$$

